

Rousea Padeliftr
Ox nibais unumisizazis anbibuikisis

BARNES'S NE® SERIES OF MATHEMATICS.

ORAL $\mathcal{A N D}$ WRITTEN:

For Common and Graded Schools, Academies, Etc.

BY
JOSEPH FICKLIN, PH.D., PROFESSOR OF MATHEMATICS AND ASTRONOMY IN THE UNIVERSITY OF TH state of missouri.

NEW YORK .:- CINCINNATI .: CHICAGO AMERICAN BOOK COMFANY

BARNES'S
 NEW SERIES OF MATHEMATICS.

This SERIES contains more practical matter in a smaller number of pages and at a less price, than any other ever offered to the public.

TABLE-BOOK AND PRIMARY ARITHMETIC.
NATIONAL ARITHMETIC. In one Volume.
El.EMENTS OF ALGEBRA.

The NATIONAL ARITHMETIC is also published in two parts, as follows:

First Book-PRACTICAL.
Second Book-ADVANCED.

KZYS to National, and Practical Arithmetics, and to Elements of Algebra, in separate volumes, for Teachers.

The NATIONAL ARITHMETIC in one Volume comprises 208 pages of the "Practical" and the whole of the "Advanced" Arithmetics.

THE order in which the different parts of the subject are presented to the mind in this book is natural and logical ; and the principles of each successive topic are carefully developed by appropriate exercises, so graded that the mind of the student must inevitably grasp the relations of the whole subject, and when the work is completed, comprehend it, not as a mass of loosely connected details, but as a unified whole.

Oral and written arithmetic are supplementary to each other, since the principles and processes are the same in both ; and as the former is more easily understood, because of the smaller numbers used in the operations, the exercises, analysis, and reasoning applied to the Oral are made the means of elucidating the principles and processes of the Written. In this way formal rules have been, in a great measure, dispensed with, and Formulas addressed to the eye as well as to the mind have been made to take their place. These will be found more efficacious, both as guides to practice and helps to the memory, since the principles are so sharply defined, and so clearly developed and illustrated by practical examples, that the mind of the student will necessarily acquire the habit of depending upon his cwn reasoning powers rather than upon the clumsy guide-posts of verbal rules.

Many new features have been introduced in the working out of this plan. Only the most salient are here referred to.

In the natural and logical arrangement, and in the gradation of topics and exercises, as well as in the statement of principles, rules, and explanations, the greatest possible simplicity has been aimed at,

The numerous and varied examples for practice have been constructed with great care, illustrating the multifarious applications of arithmetical science to business operations, the object being to pre. pare the student for the exigencies of daily life.

Since good methods in arithmetic are a vital element of success because they economize both time and energy, by securing rapidity and accuracy in calculation, several new and important methods have been introduced.

The treatment of Fractions will be found to embody several valuable improvements. By a close regard to fundamental principles, the multiplicity of cases, usually so confusing to the student, has been avoided. This will be especially apparent in Multiplication and Division, which are treated at first in two cases each, afterward reduced to one ; while, finally, all the processes of multiplication and division of fractions are brought under one general rule.

Cancellation has been more generally applied than in other arithmetical text-books, and in such a way as not only to abridge the processes, but to render the rationale of the methods more obvious. Its application to the calculation of Interest, presents some features of considerable importance in practical work.

In this connection, attention is also called to the brief, simple, and eminently practical method of working examples in Partial Payments, by means of the "Time Table" and Cancellation.

Mensuration, the Metric System, and some of the more theoretical topics have been placed in the Appendix, so that the course may be completed independently of them, at the option of the student or teacher.

The National Aritimetic is a comprehensive work in two parts, each issued in a small, compact volume, or both bound together in a single volume, comprising both the "Practical" and the "Advanced" books of the series. The first part or book is made to cover all the ground of elementary arithmetic, Fractions and Denominate Numbers; and to this has been added a brief treatment of what are usually considered advanced topics, -Percentage, Propcrtion,

Involution, etc.,-the design being to supply a convenient book, at a low price, sufficiently comprehensive for the wants of the great mass of pupils in the lower grades of Grammar Schools and in rural district schools, whose limited opportunities require the largest possible amount of information and training in a short space of time.

The Written Arithmetic has been brought down to the capacity of advanced primary grades, so that pupils taught orally in the lower grades may be able to take up the study of this part of the work without using the Table Book and Primary Arithnetic.

Each book is complete in itself, or may be used consecutively in the series; while the entire work, in one volume, will serve for a complete course. By a close economy of every line and space, excluding useless matter and avoiding all needless repetitions of analysis and explanation in the advanced portions, the author has been able to present a large amount of material in a very small compass, the object being to economize time and labor, as well as money, in this branch of school study.

The author desires to acknowledge his indebtedness to several eminent teachers and educators of experience for valuable assistance in the preparation of this work, as also for many important methods and suggestions embodied therein.

COLTMRIA, MO., Aug., 1881.

PAGE Page
Preliminary Definitions 7
Notation and Numeration 8
Roman Notation 15
Addition 17
SUbTraction 29
Multiplication 42
Division 59
Cancellation 80
Practical Applications84
Aliquot Parts 86
Properties of Numbers 92
Factors and Divisors SS
Multiples and Dividends99
Fractions 102
Reductions of Fractions 106
Addition and Scbtraction 113
Multiplication 117
Division 124
Relation of Numbers 131
Decimals 137
Decimal Currency 143
Reduction of Deciyals 145
Addition and Subtraction 149
Multiplication and Division 152
Accounts and Bills 160
Measures of Extension. 166
Measures of Capacity 169
Measures of Weight 170
Measures of Time 172
Miscellaneous Measures 174
Measures of Value. 175
Denominate Numbers 17
Longitude and Time. 193
Measurements 199
Rectangular Surfaces 199
Rectangular Solids 201
Capacity of Cisterns, Envs, etc 206
Percentage 209
Trade Discount 219
Profit and Loss 220
Commission 227
Insurance 230
Tases 232

235
Stocks and Investments 238
Interest 247
Six Per Cent. Method 2.1
Cancellation Method 352
Exact Interest 255
Problems in Interest 257
Compound Interest. 261
Annual Interest 264
Partial Payments 265
Discount 272
Bank Discount 274
Fixchange 278
Equation of Payments 28%
Averaging Accounts 292
Ratio 206
Proportion 299
Partnership 307
Involution 311
Evolution 317
Square Root 318
Cube Root 322
Roots of Higher Degrees 328
Test Examples 329
APPENDIX.
Progression 339
Arithmetical Prugression 340
Geometrical Progression 343
Annuities 346
Alligation 343
Conn., Vt., and N. Hamp. Rules for Partial Payments 350, 351
Metric System 352
Mensuration 351
Plane Surfaces 362
Solids 369
Gadging 3%
Duodecimals 376
Governuent Lands 377
Miscellaneous Tables 379
Lumbermen's Notation 380
Answers 381

2DEF FINITIONSC

1. A Unit is one thing, or a group of things considered as one; as one, one book, one dozen, one ten, one hundred.
2. A Number is a unit, or a collection of units; as one, four, six pens, and nine books.

A number answers to the question, "How many?"
3. The Unit of a Number is one of the units forming that number. Thus, the unit of six is one ; of ten cents is one cent.
4. An Abstract Number is a number that consists of units that are not named; as one, four, eight, twenty-five.
5. A Concrete or Denominate Number is a number the unit of which is named; as one rod, five cows, ten acres.
6. Like Numbers are numbers that have the same units, or express the same kind of quantity, and may be either abstract or denominate; as five and seven, eight miles and ten miles.
\%. Unlike Numbers are numbers that have different units, or express different kinds of quantity; as three pounds and five rods, six men and nine horses.

8. Notation is a method of writing numbers.
9. Numeration is the method of reading numbers expressed by figures.
10. Numbers may be expressed as follows:

1st. By worlls, as one, two, three, five, twenty, etc.
2d. By the Arabic Method.
3d. By the Roman Method.
11. In the Arabic Notation, ten characters called fig. ures are used to represent numbers.

Figures. $\quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ Names. Naught, One, Two, Three, Four, Five, Six, Seven, Eight, Nine.

The figure 0, called naught, cipher, or zero, has no value. The other nine figures are called digits, or significant figures, and each represents the number written under it. Any number can be expressed by these ten characters, when combined according to a certain method or principle.
12. To establish a uniform method in representing numbers, objects are supposed to be arranged in groups of tens, each group being ten times as great as the next lower group and having a different name. Hence, we have single things or units; next, ten single things are regarded as forming a group callied ten; next, ten of the groups called ten, as forming a group of greater value, called one hundred; then, ten of the groups called hundred as forming a group of still greater value, called one thousand, etc.
13. Each group is called an Order of Units.

Table.
10 Units (1)
10 Tens (10)
$\begin{array}{cllr}\text { make } & 1 \text { Ten, - - } & \text { - } & 10 . \\ \text { "s } & 1 & \text { Hundred, - } & 100 .\end{array}$
10 Hundreds (100) is 1 Thousand, - 1000.
10 Thousands (1000) " 1 Ten-thousand, 10000.
Any figure standing alone, or in the first place at the right of a number, represents simply units, or units of the first order ; standing in the second place from the right, it represents tens, or units of the second order; in the third place from the right it represents liundreds, or units of the third order ; in the fourth place, thousands, or units of the fourth order, etc.

Thus, 4, standing alone, represents four units ; in the number 40 , it represents four tens; in 400, it represents four hundrcds; in 4000, it represents four thousands; etc.
14. Prinolples. I. The successive order's of units increase in value tenfold from right to left.
II. Ten units of any order in a number equal one unit of the next ligher order.
III. Each removal of a figure one place to the left increases its representative value tenfold.
IV. Each removal of a figure one place to the right dimin. ishes its value tenfold.

EXERCISES.

15. 16. How many tens and units in 45 ? 68? 84? 76? 97? 89? 77? 93? 86?
1. How many hundreds, tens, and units in 243? 461? 385? 197? 614? 805 ? 746 ? 570 ? 964?
2. How many thousands, hundreds, tens, and units in 1345? 3762? 5084? 6712 ? 2968? 940\%?

Cony and read the following :

(1).	(2).	(3).	-	(4).
75	250	893	2344	7.$)$
49	475	905	4608	8175
126	681	760	6314	5084

Express in figures the ollowing :

1. 6 tens 8 units.
2. 7 tens 9 units.
3. 9 tens 3 units.
4. 6 hundreds 4 tens 5 units.
5. Four hundreds six tens.
6. Seven hundreds five units.
7. 9 hundreds 6 tens 7 units.
8. 8 hundreds 8 tens.
9. 6 thous. 9 hunds. 4 tens.
10. Three thous. six hunds.
11. Seven thous. eight tens.
12. Eight thous. six hunds.
13. 9 thous. 3 hunds. 7 tens.
14. Nine thous. fourteen.
15. Five thous. eighty-one.
16. Six thous. seven hunds.

1\%. Seven thousand one hundred seventy-three.
18. One thousand nine hundred eighty-seven.
19. Five thousand seven hundred nineteen.
20. Eight thousand seven hundred fifty-nine.
21. What number is composed of 5 hundreds 6 tens 3 units?
22. What number is composed of 7 thousands 5 tens?
23. Of 8 hundreds 4 tens 2 units ? Of 4 thousands 9 hundreds ${ }^{17}$ units?
24. Write in figures and read, five units of the fourth order, six units of the third order, one unit of the second order, and nine units of the first order.
16. A Scale in Arithmetic is the relation between the successive orders of units.
In the Arabic system of notation, the scale is ten; that is, the value of the unit in any order is ten times as great as the unit in the next lower order; hence, it is called the Decimal Scale, from the Latin word decem, meaning ten.
$\mathbf{1 \%}$. Every successive group of three orders of units, counting from the right, is called a Period.

The first period, named the period of units, is formed of the first, second, and third orders of units, or units, tens, and hundreds; the second period, named the period of ihousands, is formed of the second group of three orders from the right, and comprises thousands, ten-thousands, and hundred-thousands; the tliird period, named millions, is formed of the third group of three orders from the right; the fourth period, named billions, is formed of the fourth group of three orders from the right, etc., illustrated as follows:
18. Numeration Table.

Names of Periods.

Orders OF Units.

Number. $666,666,666,666,666,666,666$

19. There must be three figures in every period, except the one at the left, which may have one, two, or three. Every order of a number not occupied by a significant figure must be filled with a cipher.

EXERCISES.

20. Write upon the board any number, as the following:

$$
555,555,555,555,555,555,555 .
$$

1. Let the pupil rame the order of units in the following places : First, Third, Fifth, Second, Fourth, Sixth, Ninth, Fighth, etc.
2. Then name the places occupied by the following orders: Hundreds, Millions, Thousands, Billions, Ten-thousands, etc.
3. Then name the following periods : First, Third, Second, Fourth, Sixth, Fifth, Seventh.
4. And then the period and the place of the following: Thousands, Millions, Hundred-thousands, Ten-millions, etc.
5. Then practice on the above number or some other, as follows : Five units; five tens, or fifty, which is ten times five units; five hundreds, or five hundred, which is ten times five tens; five thousands, or five thousand, which is ten times five hundreds; five ten-thousands, or fifty thousand, which is ten times five thousand, etc.
6. Next reverse the process, commencing with any order, thus, five million; five hundreds of thousands, or five hundred thousand, which is one-tenth of five million ; five tens of thousands, or fifty thousand, which is one-tenth of fire hundred thousand; five thousands, or five thousand, which is one-tenth of fifty thousand, etc.

Practice the last two exercises until the decimal scale of increase and decrease is thoroughly understood.
7. Next write on the blackboard several numbers, each ccasisting of six or more periods. Thus,

$$
\begin{aligned}
& 300,300,300,300,300,300 . \\
& 666,666,666,666,666,666 .
\end{aligned}
$$

Exercise the pupils on the periods in the same manner as on the orders, until it is well fixed in the mind that each period represents a value one thousand times as large as the period on its right, and one thousandth as large as the period on its left.

Express in figures seventy-five thousand eighty-six.
analysis. Write 7 ten-thousands in the 5 th place, 5 thousands in the 4 th place, a cipher 0 in the 3 d place, there being no hundreds, 8 tens in the $2 d$ place, and 6 units in the 1st place, and we have 75086.
21. Rule for Notation. Beginning at the left, write the hundreds, tens, and units of each successive period in their proper order, filling all vacant orders and periods with cipleers.

Read the number expressed by 24567384 .
analysis. Separate the number into periods of three figures each ; thus, $24,567,384$. The third period is millions, the second is thousands, and the first is units; hence the number is 24 million 567 thousand 384.

In the same manner read

1.	5603%	3.	320765.	5.	5760040.
2.	80140.	4.	$12 \% 0084$.	6. 25003075.	

22. Rule for Numeration. I. Begin at the right and separate the number into periods of three figures cach.
II. Then begin at the left and read each successive period as if it were units, giving each its name except the period of units.
23. Express in figures and read the following numbers:
24. Three hundred seven thousand sixty.
25. Seventy-seven thousand two hundred eight.
26. Four hundred thousand six hundred forty.
27. Two million forty-eight thousand four hundred twenty.
28. Sixty-three million fifty-two thousand eight hundred.
29. One hundred five million seven hundred eighty thousand six hundred fifteen.
30. Six units of the 6th order, eight of the 3d, and five of the 2 d .
31. Three units of the "th order, seven of the 6th, one of the 4 th, four of the 3 d , and nine of the 1st.
32. Write fifty-six units in the 3d period, one hundred fifty in the $2 d$ period, and fifteen in the 1st.
33. Write nine units in the 5th period, and twenty-five in each of the lower periods.
34. Write twelve trillion 3 hundred thirty billion 205 million ${ }^{7}$ hundred thousand ninety.
35. Write 3 in the units place of five periods and read the number. Write 33 in the tens and unit places.
36. Write successively in each of six periods 205, and read the numbers.
37. Write 420 in every alternate period of seven periods, beginning with the first, and read the number.
38. Three hundred twenty million seventy-five thousand nine hundred eighty-nine.
39. Seven billion twenty-five million four hundred thousand six hundred fourteen.
40. Fifty-six trillion one hundred seven billion five hundred sixty million three hundred fifty-two thousand.
41. Write two billion ten million forty thousand seventyfive.
42. Eight quadrillion three hundred sixty trillion thirty* five billion seven hundred forty thousand.

Read the following numbers:

1.	48075.	6.	96030%	11.	2400006245.
2.	80016.	7.	3762081.	12.	5820157086.
3.	73240.	8.	5007163.	13.	30064205000.
4.	260450.	9.	63100075.	14.	812000762153.
5.	508200.	10.	40250903.	15.	27360450008074.

24. The Roman Notation employs seven capital lettere to express numbers.

Letters.	I,	V,	X,	L,	C,	D,	M.
Values.	1,	5,	10,	50,	100,	500,	1000.

When used alone, each letter has a fixed value.
Numbers may be expressed by combining or repeating these seven capital letters according to the following principles:

1. Repeating a letter repeats its value.

Thus, III represents $3 ; \mathrm{XXX}, 30$; CCC, 300 , etc.
2. A letter of less value placed before one of greater takes its value from that of the greater.

Thus, IV represents 4 ; IX, 9 ; XL, 40, etc.
3. A letter of less value placed after one of greater adds its value to that of the greater.

Thus, XI represents $11 ; \mathrm{XV}, 15$; LX, 60 ; DC, 600 , etc.
4. A letter placed between two letters, each of greater value, is taken from the sum of the other two.

Thus, XIX represents 19; LIV, 54; CXL, 140.
5. A bar placed over a letter increases its value a thousand times.

Thus, $\overline{\mathrm{X}}$ denotes 10,$000 ; \overline{\mathrm{L}}, 50,000 ; \overline{\mathrm{C}}, 100,000$, etc.
Roman Notation is used principally in marking dials, numbering chapters and sections in books, etc.
25. Table of Roman Notation.

Roman.	Script.	Roman.	Script.	man.	Script.
	.. 1	XVII.		LX	60
	. 2	XVIII	. 18	LXX.	70
	. 3	XIX.	. 19	LXXX.	80
		XX.	. 20	XC.	90
V.	. 5	XXI.	. 21		100
VI.	6	XXII.	..22	CC.	200
VII.	7	xxili.	.23	CCC.	300
VIII.	8	XXIV.	. 24		500
IX.	. 9	XXV.	. 25	DC.	600
X.	. 10	xxvi.	. 26	CM.	900
XI.	. 11	XXVII.	. 27	M.	1000
XIL.	112	XXVIII.	. 28	MD.	1500
XIII.	13	XXIX.	. 29	$\overline{\mathrm{x}}$.	10000
XIV.		Xxx.	. 30		100000
XV.		XL.			000000

MDCCCLXXXI $=1881$, one thousand eight bundred eighty-one.

EXERCISES.

26. Express by Roman Notation:
27. Sixteen. \quad \%. Ninety-six. 13.695.
28. Forty-two.
29. Thirty-five.
30. Eighty-seven.
31. Fifty-nine.
32. Sixty-four. 12. Ten thousand twenty-six.
33. 888.
1. 1529.
1. $2 \% 30$.

1\%. 389%
18. 40000.

2'. Express by Arabic Notation:

1. LXVI.	5. DCXIV.	9. MDCCCXCIX.
2. XCIX.	6. $\overline{\text { CCOXCV. }}$	10. $\overline{\text { XCXLIX. }}$
3. CXXXI.	\%. $\overline{\text { DLXXV. }}$	11. $\overline{\text { LDCCXIX. }}$
4. CCLX.	8. MCLXVIII.	12. MMDCCXCI.

Inductive Exercises.

28. 29. How many men are 5 men and 9 men?
1. What number is obtained by uniting 6 units and 7 units?
2. What number contains as many units as 8 and 6 united?
3. How many cents are 12 cents and 8 cents? 7 tons and 9 tons? 6 miles and 10 miles?
4. How many hats are 9 hats and 8 hats? 11 pens and 6 pens? 5 figs and 9 figs?
5. How many tens are 3 tens and 6 tens? 4 tens and 7 tens? 8 tens and 9 tens?
\%. How many hundreds are 5 hundreds and 4 hundreds? 9 hundreds and 6 hundreds? 4 thousands and 6 thousands?
6. How many are 6 and 9 ? 12 and 8 ? 9 and 11 ?
7. What sum of money is equal to 5 dollars and 14 dollars?
8. What is the unit of their sum?
9. What is the unit of 8 books and 7 books? What is the unit of their sum?
10. What is the unit of 12 bushels? Of 10 feet? Are their units like or unlike? Can they be united? Why not?
11. What is the unit of 7 tens? Of 6 hundreds? Can their units be united? Why not?
12. What kind of numbers only can be united? What orders of units?
13. How many are 7\%, 4 , and 6 ? 4, 7, and 6 ? 6, 4 , and 7?
14. When the same numbers are united in a different order, is the result changed ?
15. Uniting two or more numbers or groups of objects of the same kind into one is called Addition ; and the number obtained by adding is called the Sum.
16.

Drill Table No. 1.

	A	B	C	D	E	F	G	H	I
1.	3	4	2	7	5	1	6	8	9
2.	2	3	8	6	\%	9	4	6	2
3.	4	7	3	9	6	5	8	3	8
4.	1	5	8	3	4	6	2	5	6
5.	6	1	7	4	8	5	9	4	3
6.	7	6	4	2	9	3	3	2	9
7.	5	4	9	7	6	4	6	r	5
8.	2	8	6	8	8	y	4	6	9
9.	8	3	5	6	2	2	y	8	4
10.	6	7	8	7	5	7	2	7	O
11.	9	6	6	4	3	5	8	9	8
12.	4	9	4	3	4	6	3	5	9

By columns, at sight, give the sum of each number and the one next below it ; then, by lines, give the sum of each number and the one next on the right of it.

In the same manner, by columns and by lines, practice with sets of three figures, then of four, etc., until long columns can be added rapilly and accurately.
31. A Sign, in Arithmetic, is a character used to indicate an operation, or relation.
32. The Sign of Addition is + . It is read plus, which signifies more.

Thus, $8+4$ shows that 8 and 4 are to be added, and is read, 8 phes 4 .
33. The Sign of Equality is $=$. It is read, equals, or is equal to.

Thus, $8+4=12$ denotes that the sum of 8 and 4 equals 12 , and is read 8 plus 4 equals 12. It may also be read, 8 and 4 are 12.

DRILL EXERCISES.

34. 35. Add or count by 2 's from 2 to 60 .
*Written, $\quad 2+2+2+2+2+2+2+2+2$, etc.
Read, $2,4,6,8,10,12,14,16,18$, etc.
1. Then commence with 1 and read, thus:

$$
1,3,5,7,9,11,13,15,17,19 \text {, etc. }
$$

3. In the same manner, add by 3 's from 3 to 90 .
4. Next form a new combination, commencing with 1 and then with 2 , thus,

$$
2,5,8,11,14,17,20,23,26,20, \text { etc. }
$$

5. Treat the remaining digits, $4,5,6,7,8$, and 9 in the same manner, forming as many combinations, less one, with each, as there are units in the leading digit, extending the process as far as may be desirable.
6. Add alternately by 2 's and 3 's to 50 .

Wriiten, $2+3+2+3+2+3+2+3+2+3+2+3$, etc.
Read, 2, 5, 7, $10,12,15,17,20,22,25,27,30$, etc.
In the same manner add:
7. By 2's and 4's to 60 .
8. By 3's and 4's to \% $\%$.
9. By 4's and 5's to '72.
10. By 2's, 3 's, and 4's to 81 .
11. By 2 's, 5 's, and 3 's to 9%.
12. By 2's and 5's to 56 .
13. By 5 's and 3 's to 69.
14. By 10 's and 5 's to 90 .
15. By 2's and 6 's to 64 .
16. By 6 's and 7's to 91.

[^0]Additional exercise may be had upon Drill Table No. 1, as follows: Add each column from bottom to top rapidly, pronouncing partial results; thus, in column A, $4,13,19$, $27,29,34$, etc. Then from top to bottom; thus, $3,5,9$, $10,16,23,28$, etc.

In the same manner add each line from left to right, and then from right to left.

Then form a new combination, commencing to add with 1 each column and line; then, successively, commence with $2,3,4$, and so on to 9 .
35. When the question-mark ? is placed after the sigu $=$, thus, $=$?, the two together are read equals how many? or what? and signifies that the answer is to be found.

The following exercises may be copied on the slate, or the teacher may read the parts, and the pupil promptly give the sum.

$10+4+6=?$	$7+12+3=?$	$14+6+7=$
$13+8+7=$?	$18+0+10=$?	$4+2+15$
$6+7+10=$?	$12+10+8=$?	$12+10+$
$8+11+5=$?	$20+8+6=$?	$23+5+$
$15+3+10=$?	$12+7+9=$?	$10+25+7=$
$16+5+7=$?	$21+10+7=$?	$6+$
$7+23+5=$?	$5+25+12=?$	$5+6+13$
$19+10+4=$?	$22+8+10=?$	$6+8+$
$9+13+8=$?	$14+5+9=$?	$10+12+10$
$24+6+9=$?	$7+15+8=$?	$21+11+10$
$26+0+10=$?	$18+0+12=?$	$14+10+12$
$15+9+7=$?	$9+12+11=$?	$20+40+10$

A few minutes of every recitation in written arithmetic should be appropriated to the drill tables and mental exercises preceding each division of the subject.

Mental Exercises.

36. 37. How many units are 8,6 , and 7 ? 9,5 , and 8 ?
1. How many tens are 90,40 , and 20 ? 60,30 , and 50 ?
2. How many tens and units are 20,12 , and 9 ?
3. Numbers composed only of tens and units may be added at sight by adding first the tens, then the units, and writing the results. Thus, $45+23=68$.

Observe that 4 tens and 2 tens are 6 tens, and 5 units and 3 units are 8 units, which added to 60 make 68.
5. At sight, give the sum of each of the following:

$40+10$	$20+64$	$36+22$	$90+14$	$16+75$
$50+9$	$70+28$	$80+17$	$28+37$	$49+31$

6. What is the sum of 7,5 , and 9 ? Of 70,50 , and 90 ? Of 700,500 , and 900 ? Of 7000,5000 , and 9000 ?

Observe that the sum of 7,5 , and 9 is the same, whether they represent units, tens, hundreds, or thousands.
7. Give the sum of each of the following, at sight. Thus, $200+60+5=?$ Read, 2 hundreds +6 tens +5 units $=$ what?

8.	$300+20+9=?$	12. 9.
	$600+7000+500+80=?$	
10.	$800+40+25=?$	13. $3600+200+36=?$
11.	$500+100+75=?$	14. $6000+3000+90=?$ 15. $600+1000+42=?$

Also when written in columns, as follows :

(16.)	(1\%)	(18.)	(19.)	(20.)	
60	400	5000	1500	6000	tons.
40	700	700	650	1040	،
30	240	90	36	805	,

In all the drill and mental exercises, little more than models can be given. The teacher is expected to give such additional examples as he may deem proper.
21. John gare 20 cents for a slate, 10 cents for a book, and had 15 cents left. How many cents had he at first?

Analysis. He had the sum of 20 cents, 10 cents, and 15 cents, which is 45 cents.
22. A pole is 15 feet in the air, 9 feet in the water, and 5 feet in the earth. How long is the pole?
23. Belle gave 15 cents for some thread, 10 cents for needles, and 8 cents for pins. How much did she spend?
24. An orchard contains 40 peach trees, 30 pear trees, and 25 plum trees. How many trees in the orchard?
25. There are 45 boys and 30 girls in a school. How many pupils in all?
26. I paid 25 dollars for a coat, 10 dollars for a pair of boots, and 7 dollars for a lat. What did I pay for all?
27. James father was 40 years old 10 years since. How old will he be 12 years hence?
28. How many acres of land in three fields containing 40,15 , and 25 acres respectively?
29. A lady paid 45 dollars for a dress, 20 dollars for a shawl, and 10 dollars for a bonnet. What did all cost?
30. What is the cost of a pound of tea at 50 cents, a pound of coffee at 30 cents, and a quart of vinegar at 18 cents?
31. For how much must I sell a horse that cost me 120 dollars to gain 25 dollars?
32. George has 75 cents and Clarence has 60 cents ; if each earns 25 cents more, how many cents will each then have?
33. A horse cost 250 dollars, a carriage 100 dollars, and a harness 50 dollars. What did all cost?
34. A carpet was sold for fifty dollars, which was fifteen dollars less than it cost. What did it cost?

3\%. Principles. I. Only like numbers can be added.

II. Only like orders of units can be added.
III. The sum and the parts added are like numbers.

2DE FINITVIONSC

38. The Sum or Amount of two or more numbers is the number equivalent to all the units of the given numbers.
39. Addition is the process of finding the sum of two or more numbers.
40. An Equation consists of two equal numbers or sets of numbers connected by the sign of equality.

Thus, $7+5=12$ and $15=8+7$ are equations.

The expression on the left of the sigu is called the first member of the equation, that on the right, the second member.

Thus, $7+5=12$ is an equation, and is read, 7 plus 5 equals 12 , $7+5$ being the first member, and 12

EQUATION. the second member of the equation; and 7,5 , and 12 are called the terms of the equation.

Name the members and terms of each of the following: | 1. $12+6=18$. | $\begin{array}{l}\text { 3. } 20+10=30 . \\ \text { 2. } 24+8=32 .\end{array}$ | 5. |
| :--- | :--- | :--- |
| 4. $40+20=60$. | 6. $15+31=26+4$. | |
| 2 | $15+30+20$. | |

41. 42. The Sign of Dollars is \$. It is read, dollars.
1. The character ϕ, or the letters $c t s$. are used to denote cents.

Thus, 65%, or 65 cts., is read, 65 cents.
3. To distinguish dollars from cents, when written as one number, a point (.) is placed between them.

Thus, $\$ 84.56$ is read 84 dollars 56 cente.
4. Since one dollar is 100 cents, cents always occupy two places at the right of the point.

Thus, 28 cents may be written $\$.28$; 40 cents, $\$.40$.
5. When the number of cents is less than 10 , a cipher must occupy the first place at the right of the point.

Thus, 9 cents is written $\$.09 ; 7$ dollars 8 cents, $\$ 7.08$.
6. Neither the sign (\$) nor the point (.) should be omitted.

Read the following equations:

1. $\$ 9+\$ 7=\$ 16$.
2. $\$ 14+\$ 21=\$ 35$.
3. $\$ 45+\$ 32=\$ 7 \%$.

$$
\begin{aligned}
& \text { 4. } \$.25+\$.50=\$.75 . \\
& \text { 5. } \$ 3.10+\$.75=\$ 3.85 . \\
& \text { 6. } \$ 1.05+\$.08=\$ 1.13 .
\end{aligned}
$$

Express by the proper figures and signs :
7. Ten dollars fifty cents. 12 . Three dollars fifteen cents.
8. Twelve dollars five cents.
9. Ninety-seven cents.
10. Five dollars forty cents.
11. Eighty-eight cents.
13. One dollar sixty cents. 14. One hundred dol. six cts. 15. Seventy dollars twelve cts. 16. Ten dollars ten cents.

WRITTEN EXERCISES.

42. To find the sum of any two or more like numbers.

1. Find the sum of 537,365 , and 849 .

Explanation. Write the numbers so that units operation. of the same order stand in the same column.

When the sum in any column is 10 , or more than 10, it contains one or more units of a higher order, which must be added to the next column.

Beginning with the lowest order of units, add
53%
365
849
1751 sum. each column separately; thus, $9,14,21$, the sum of the units, equal to 2 tens 1 unit. Write the 1 unit under the units' column, and add the 2 tens to the tens' column; thus, $2,6,12,15$, the sum of the tens, equal to 1 hundred 5 tens. Write the 5 tens under the tens' column, and add the one hundred to the hundreds' column thus, $1,9,12,17$, the sum of the hundreds, equal to 1 thousand 7 hundreds, which write in the hundreds' and thousands' places. Hence the entire sum is 1751 .

In like manner copy and add the following :

(2).	(3).	(4).	(5).	(6).	$(\%)$.
347	195	607	480	298	472
683	736	825	673	765	638
$\underline{928}$	$\underline{548}$	$\underline{779}$	$\underline{309}$	$\underline{77}$	$\underline{65}$

Rule. 1. Write the numbers to be added so that like orders of units stand in the same column.
2. Commencing with the lowest order, add each column separately, and if the sum can be expressed by one figure, write it under the column added.
3. If the sum of any column contains more than one figure, write the unit figure under the column added, and add the remaining figure or figures to the next column.

To test the correctness of the result, perform the addition in the reverse direction, from tor to bottom, and if the results agree the work is probably correct.

A great number of written exercises may be made from the Drill Table on page 18.

To illustrate, copy six examples of three nambers each from any three consecutive columns, as A B C, thus:

(8).	(9).	(10).	(11).	(12).	(13).
342	238	473	158	617	764
238	473	158	617	764	549
$\underline{473}$	$\underline{158}$	$\underline{61 \%}$	$\underline{764}$	$\underline{549}$	$\underline{286}$

Observe that the first number of the first example is composed of the first three figures in line 1 ; the secord, of the first three in line $\mathbf{2}$; and the third, of the first three in line $\mathbf{3}$.

Also, that the second example commences with the first three figures in line 6 ; the third example with the first three figures in tine 3 , and so on.

In the same manner copy examples of four, five, or more numbers each. Then use in the same way any other three consecutive columns, as B C D, C D E, etc.

Then in the same manner from four consecutive columns, as B CDE, CDEF, etc., copy examples composed of four numbers each, then of five, and so on.

These exercises may be extended, if desired, to eight columns, and to eight or ten numbers in each example.
43. The following is a good exercise for the slate or blackboard :

Explanation. Write two numbers, as 275,463 ; add them without drawing a line, and use their sum 738 as a third number; then add the three numbers and use their sum 1476 as a fourth number, and so on as far as desired.

275
463
738
1476

In like manner add the following, extending each to the sixth number:
(1.)
(2.)
64%
285
(3.)

308
705
(4.)

1306
972
(5.)
(6.)

2670
890%
124%
5062
44. When numbers composed of dollars and cents are to oe added, dollars are written under dollars, and cents under cents, so that the points stand in the same vertical line.

Copy, add, and test the following eleven examples :

	(1)	(2)	(3)	(4.)	(5.)
6.	$\$ 36.27$	$\$ 50.04$	$\$ 200.00$	$\$ 100.07$	$\$ 304.00$
$\%$	5.96	7.80	2.50	40.50	75.75
8.	12.08	102.10	30.04	10.10	12.05
9.	120.40	15.08	9.28	9.68	27.54
10.	75.00	208.00	16.75	.87	5.81
11.	.94	3.43	94.56	250.00	63.02

For examples 6 to 11, read across the page.

Find the sum
12. Of 2500 acres, 1715 acres, 3007 acres, 510 acres.
13. Of 1420 yards, 672 yards, 1200 yards, 700 yards, and 1040 yards.
14. Of 1850 men, $1650 \mathrm{men}, 2000 \mathrm{men}, 480 \mathrm{men}$, and 96 men.
15. Of $\$ 84 .{ }^{7} 70, \$ 175.05$, $\$ 300, \$ 15.75, \$ 28, \$ 9.8 \%$, and $\$.99$.
16. I bought at different times wheat as follows: 150 bushels, for $\$ 320.50$; 410 bushels, for $\$ 92 \% .80$; 1000 bushels, for $\$ 2120$; and 605 bushels, for $\$ 1310.40$. How much wheat did I purchase, and what did it cost me?
17. By selling a farm for $\$ 13050$, I lost $\$ 960.50$. What did it cost me?
18. Four loads of hay weigh respectively $19 \% 6,2048$, 213%, and 1896 pounds. What is the weight of all?
19. If a father gives to each of six sons $\$ 2514.25$, what sum does he give to all?
20. A merchant engaged in trade with $\$ 108 \%$. The first year he gained $\$ 2516.75$; the second, $\$ 1809.40$; and the third year, $\$ 3500$. How much capital had he then?
21. A man bought a house for $\$ 7500$. He paid $\$ 1271.40$ for repairs, and $\$ 3 \% 5 . \% 5$ for painting. For what must he sell it to gain $\$ 540$?
22. A railroad company bought of A, ${ }^{7} 50$ cords of wood ; of $\mathrm{B}, 910$ cords; of $\mathrm{C}, 325$ cords ; and of D , as many cords as of B and C both. How many cords did the company buy of all?
23. Three persons enter into partnership. A puts in $\$ 4500 ; \mathrm{B}, \$ 32 \% 5$; and C puts in as much as A and B both. What did C put in, and what sum did all put in?
24. A drover bought 450 sheep of one farmer, 384 of a second, 510 of a third, 600 of a fourth, and of a fifth as many as he bought of the first and second. How many did he buy of all?
25. A man owns a farm worth $\$ 10500$, a mill worth $\$ 9000$, mining stock worth $\$ 125 \% 5$, and $\$ 7650$ in city bonds. What is he worth?
26. The distance from New York to Gibraltar by sea is 3300 miles ; from Gibraltar to Malta, 1025 miles; from Malta to Alexandria, 750 miles; and from Alexandria to Bombay, 6499 miles. What is the distance from New York to Bombay?

27 . A man gave to each of his three sons, $\$ 5650$; to each of his two daughters, $\$ 3825$; and to his wife, $\$ 6375$. What sum did he give to all ?
28. The receipts of the Centennial Exhibition from May 10 to November, 1876, were nearly as follows: for admission fees, $\$ 3813724.49$; for rents, $\$ 290000$; for royalties and percentages, $\$ 205010.75$. What was the total?

For examples 29 to 41 inclusive, read across the page ; for 42 to 51 , in columns as arranged.

(42.)	(43.)	(44.)	(45.)	(46.)
29. $\$ 290.57$	\$10.90	\$25\%.25	\$18.86	\$784.65
30. $8 \% .81$	7.67	27.25	29.42	300.50
31. $\quad 5 \% .49$	14.39	247.65	172.64	79.62
32. 132.67	17.30	489.42	86.09	150.40
33. 118.44	20.21	193.36	57.50	638.79
34. 501.76	23.31	290.52	98.79	47.09
35. 114.52	26.04	79.35	8.09	500.00
(4\%.)	(48.)	(49.)	(50.)	(51.)
36. 3541386	2464580	708061	60389	400300
3\%. 962000	8763042	$318 \% 519$	57063	808967
38. 4093176	931876	48000	40938	912\%39
39. 86040	650489	307908	91872	29\%346
40. 1093\%1	76132	80356	630%	730825
41. 2163000	58%	4891605	819	47961

INDUCTIVE EXERCISES.

45. 1 . How many cents are 12 cents and 8 cents?
46. Twenty cents are how many more than 12 cents? Than 9 cents? Than 8 cents? Than 11 cents?
47. How many less are 12 cents than 20 cents? 8 cents than 20 cents? 11 cents than 20 cents?
48. If Mary has 18 cents, how many more must her father give her, that she may have 25 cents?
49. James had 25 cents and spent 7 ; how many cents had he left?
50. 25 is how many units greater than 18 ? 18 is how many units less than 25 ?
51. From a piece of cloth containing 21 yards, 10 yards were cut ; how many yards remained?
52. How many more are 20 bushels than 16 bushels?
53. How many tens are 9 tens less 6 tens?
54. How many hundreds greater are 7 hundreds than 4 hundreds? 10 hundreds than 2 hundreds?
55. How many thousands less are 5 thousands than 9 thousands?
56. What is the unit of 16 rods and 12 rods? How many rods less are 12 rods than 16 rods? The unit of 4 rods?
57. What is the unit of 26 days? Of 15 men? Are the units like, or unlike?
58. Can 15 men be taken from 26 days? Why not?
59. Only what kind of a number can be taken from another?
60. Comparing two numbers by finding how many units the one is greater or less than the other is called Subtraction, and the result obtained is called the Difference.

4\%. The Sign of Subtraction is -. It is read minus, which signifies less.
:Thus, $14-9=5$ is read 14 minus 9 equals 5 , or 14 less 9 is 5 .
When a part is taken from the whole, the difference is sometimes called the Remainder. Thus, the difference between 14 and 5 is 9 , or if 5 yards of cloth are cut from 14 yards, the remainder is 9 yards.
48. The Parenthesis, (), denotes that the enclosed expression is to be considered as one number. The Vinculum, -, has the same signification.

Thus, $25-(9+6)$, or $25-\overline{9+6}$, shows that the sum of 9 and 6 is to be taken from 25 .

Drill Exercises.

49. 50. Write on the blackboard any number, as 5. The teacher may name one part, and the pupil the other, until all its parts are named. Thus, the teacher says " 1 and," the pupil adds " 4 are 5 ;" again, " 2 and," the pupil adds " 3 are 5," etc.
1. In like manner, name the parts of each number from 6 to 25.
2. Again write on the slate or blackboard a line of figures, thus,

$$
2,5,3,7,6,8,4,9
$$

Give promptly at sight the difference between each two consecutive numbers; as, 5 less 2,5 less $3,{ }^{7} 7$ less 3 , etc.
4. Next, the difference between the sum of each two consecutive numbers and the next one on the right; thus, 2 and 5 less 3,5 and 3 less 7 , etc.
5. Subtract each number in succession from 10 ; then from $11,12,13$, etc., to 25 .
6. Subtract by 2 's from 24 to 0 .

Written.

$$
\begin{array}{ll}
\text { Written. } & 24-2-2-2-2-2-2-2-2-2-2-2 . \\
\text { Read. } & 24,22,20,18,16,14,12,10,8,6,4,2,
\end{array}
$$

'\%. Add by 3 's from 0 to 48 , and subtract by 3 's back to 0 .
8. From 1 to 49, and back. From 4 to 52, and back.
9. In like manner, begin at different numbers, and add forward and subtract back by 4 's, 5 's, 6 's, 7 's, 8 's, 9 's, and 10 's.
10. Dictation exercises, to be treated as on page 20:
$19-6=$? $\quad 7+12-9=$? $\quad 13+5-7=$? $\quad 19-4+7=$?
$21-10=$? $16+6-8=$? $20+7-8=$? $12-5+13=$?
$24-8=$? $12+9-7=$? $\quad 9+11-6=$? $\quad 21-8+12=$?
$20-12=$? $15+10-8=$? $14+5-9=$? $25-9-6=$?
11. Give the difference between

18 and $7+5 . \quad 20$ and $7+6 . \quad 6+10$ and $9+5$.
21 and $.9+2 . \quad 24$ and $9+3 . \quad 12+7$ and $6+3$.
17 and $10+5$. 19 and $11+2 . \quad 14+6$ and $10+10$.
12. For rapid exercise:

Write. $12+6-5+7-3-8+10+6-7+9+3$, etc.
Read. 12, 18, 13, 20, 17, 9, 19, 25, 18, 27, 30, etc.
$9+10+6-7+2-8=$? $\quad 25-9+8+6-5-10+7=$? $16-12+20-4-3+9=? 6+30-10-5+12-3+4=$?
13. Again, write on the board combinations as follows:

$$
25-9, \quad 20+6, \quad 21-12, \quad 14+10, \quad 9+7-3, \quad \text { etc. }
$$

Then require the pupil to make applied examples for the same. Thus, for 25-9: "I had 25 cents, and gave 9 cents for a slate; how many cents had I left?" Another pupil answers: "The difference between 25 cents and 9 cents, which is 16 cents." Again, for $9+7-3$, "James had 9 marbles he bought 7 more and lost 3; how many had he then?" etc.

Exercises similar to the above should be used for occasional drill, and may be extended and varied, at the option of the teacher.
14. Any number above 20 and less than 100 can be separated at sight into two parts, one of which shall contain 1 $t e n$ and the units, if any. Thus, $56=40+10,60=50+10$, $47=30+17,88=70+18,95=80+15$, etc.
15. Let the pupil practice upon all the numbers from 20 to 99 , separating each into parts, as in example 14.
16. Then find the difference between any digit and a number composed of two figures, when the unit figure is less than the digit, as 8 and 43. Thus,

Separate 43 into the parts $30+13$, and at once we know that the difference between 13 and 8 is 5 , which united with 30 makes 35 , the difference between 43 and 8.

1\%. Write on the slate or board a series of numbers between 20 and 99 , arranged in any order, and under each number write the same digit. Thus,

21	27	30	24	36	32	23	25	33	41	etc.
$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	$\underline{3}$	3	-	3	3	3

18. After subtracting 3 from each number and writing the difference, erase the same and repeat, until the difference can be given at sight.
19. In the same manner practice with $4,5,6,7,8$, and 9 .
20. Then write a new set of numbers, and practice upon them in the same manner, and so continue until the difference between any digit and any number composed of but two figures can promptly be given at sight.
21. What is the difference between

174 and $6 ?$	61 and $8 ?$	22 and $3 ?$	93 and $9 ?$
37 and $9 ?$	53 and $4 ?$	75 and $8 ?$	87 and $8 ?$
85 and $7 ?$	47 and $9 ?$	31 and $5 ?$	66 and $7 ?$
61 and $3 ?$	84 and $5 ?$	46 and $9 ?$	52 and $6 ?$
55 and $6 ?$	92 and $8 ?$	75 and $7 ?$	34 and $9 ?$
26 and $9 ?$	63 and $7 ?$	91 and $3 ?$	84 and $8 ?$

22. Find the difference between 73 and 48 ?

Since the 8 units in the smaller number cannot be taken from the 3 units in the larger number, separate the larger number into $60+13$, and take the 8 units from 13

$$
\begin{aligned}
& 73=60+13 \\
& \frac{48}{25}=\frac{40}{20}+\frac{8}{5}
\end{aligned}
$$ units, and the 4 tens or 40 from the 6 tens or 60 , and the difference between 73 and 48 is 2 tens and 5 units, or 25 .

23. In like manner, find the difference between

62 and $2 \% . \quad 85$ and $39 . \quad 42$ and $29 . \quad 7 \%$ and 68. 48 and 71. 56 and $82 . \quad 93$ and $38 . \quad 80$ and 44. 19 and 36. 60 and $31 . \quad 57$ and 18. 46 and 72.
24. What number added to ${ }^{r}$ makes 23 ? 31 ? 25 ? 34 ?
25. What number taken from 32 leaves 9 ? 7? 6? 8? 10?
26. What number added to 26 makes 31 ? 42 ? 54 ? 60 ?
2%. What number taken from 54 leaves 15 ? 26 ? 45 ? 37 ?
28. How many units are 8 units less 5 units? $8-5=$?
29. How many tens are 8 tens less 5 tens? $80-50=$?
30. How many hundreds are 8 hundreds less 5 hundreds? $800-500=$?
31. How many thousands are 8 thousands less 5 thousands? $8000-5000=$?

Observe that the difference, abstractly considered, between 8 and 5 is the same, whether it represents units, tens, hundreds, or thousands, etc.
32. Give the difference of each of the following at sight:

$40-20=?$	$500-300=?$	$1200-800=?$	$250-50=?$
$60-30=?$	$700-200=?$	$5000-2000=?$	$480-400=?$
$90-40=?$	$600-400=?$	$2700-900=?$	$300-80=?$

Also when arranged in columns:

825	1100	4000	950	3600	2400	3200
$\underline{6.00}$	500	$\underline{1000}$	$\underline{700}$	$\underline{800}$	$\underline{1200}$	$\underline{900}$

Mental Exercises.

50. 51. George had 50 cents, and gave 20 cents for a slate. How many cents had he left?
1. If 9 gallons of vinegar are drawn from a cask containing 42 gallons, how many gallons remain?
2. From a bin containing 60 bushels of wheat, 12 bushels were taken at one time, and 8 at another. How many bushels remained?
3. If I live 16 years longer, I shall be 72 years old. How old am I now? How old was I 13 years since?
4. A lady went shopping with 2 ten-dollar bills and 1 five-dollar bill. She paid $\$ 13$ for a shawl, $\$ 4$ for a pair of gaiters, and $\$ 2$ for a pair of gloves; how much had she left?
5. What number must be subtracted from 70 to make the number 12 more than 36 ? 9 less than 50 ?
6. If I had $\$ 25$ more than I now have, I should have $\$ 63$. What have I now?
7. A laborer receiving $\$ 64$ as a month's wages, paid $\$ 10$ for a barrel of flour, $\$ 15$ for coal, and $\$ 20$ for an overcoat. How much had he left?
8. A man having 83 acres of land, sold 25 acres. How many acres had he left?
9. A man having $\$ 500$ in bank, drew out $\$ 300$. How much was left in bank?
10. The sum of two numbers is 450 , and the less is 200 ; what is the greater number? If the greater is 350 , what is the less?
11. A street car starts with 20 passengers. If 12 leave, and 23 get in, how many passengers are then aboard? How many more than at starting?
12. A man earned $\$ 36$ one week, and $\$ 25$ the next; after paying $\$ 35$ expenses, what had he left?
13. How many less than 45 tons are 25 tons plus 12 tons?
14. A lady bought a muff for $\$ 16$, a fur collar for $\$ 18$, and a pair of fur gloves for $\$ \%$, and gave in payment a 50 dollar bill. How much change should she receive?
15. How many less than 70 miles are 26 plus 32 miles?
16. Forty-four plus 21 equals 70 minus how many?
17. What number must be added to 24 , to make the sum 9 less than 45 ?

19. $26-(9+8)=?$	24. $8+20-12=30-?$
20. $42-17+5=?$	25. $11+19-7=20+?$
$21.22+40-30=?$	26. $16+8-(7+12)=?$
$22.36-9=12+?$	2\%. $47-13-?=10+15$.
$23.8+17=30-?$	$28.60-20+15=?+5$.

51. Principles. I. Any number, or any order of units, can be subtracted only from a like number or a like order of units.
II. The minuend, subtrahend, and remainder must be like numbers.
III. The sum of the remainder and subtrahend must equal the minuend.

2DEF FINITIONSC

52. The Difference between two numbers is a number which added to the less gives a sum equal to the greater.

When a part is taken from the whole, the difference is called the Remainder.
53. Subtraction is the process of finding the difference between two like numbers.
54. The Minuend is the greater of two numbers whose difference is required.
55. The Subtrahend is the smaller of two numbers whose difference is required.

WRITTEN EXERCISES.

56. To fink the difference between any two like numbers.
57. Find the difference between 745 and 478 .

Explanation. Write the numbers as in Addition (42), and subtract each order of units separately.

Since 8 units cannot be
 subtracted from 5 units, add 10 units (1 ten) taken from the next higher order, making 15 units; 8 units from 15 units leave 7 units.

As 1 ten (10 units) has been taken from the 4 tens, there are 3 tens left, and since 7 tens cannot be subtracted from 3 tens, add 10 tens (1 hundred) taken from the next higher order, making 13 tens; 7 tens from 13 tens leave 6 tens.

As 1 hundred (10 tens) has been taken from the 7 hundreds, there are 6 hundreds left, and 4 hundreds from 6 hundreds leave 2 hundreds. Hence, the difference between 745 and 478 is 267 , since $267+478=745$ (Prin. III).

Instead of taking 1 from the next higher order of units in the minuend, we may add 1 to the next higher order of units in the subtrahend. Thus, in the above example, we may say, 8 units from 15 units leave 7 units, 8 tens from 14 tens leave 6 tens, and 5 hundreds from 7 hundreds leave 2 hundreds, the difference 26% being the same in both operations.

In like manner, solve and prove the following:

	(2).	(3).	(4).	(5).	(6).	$(\%)$.
From	475	613	32%	841	760	915
Subtract	$\underline{148}$	$\underline{247}$	$\underline{165}$	$\underline{573}$	$\underline{482}$	$\underline{358}$
	(8).	(9).	(10).	(11).	(12).	(13).
From	524	363	837	603	700	401
Subtract	$\underline{342}$	$\underline{94}$	$\underline{420}$	$\underline{240}$	$\underline{184}$	$\underline{96}$

Rule. 1. Write the subtrahend under the minuend, so that units of the same order stand in the same column.
2. Beginning at the right, subtract the units of each order of the subtrahend from the units of the corresponding order of the minuend, and write the remainder underneath.
3. When thie number of units of any order of the subtrahend is greater than the number of units of the corresponding order of the minuend, add 10 to the latter and subtract. Then diminish by 1 the units of the next higher order of the minuend, or increase by 1 the units of the next higher order of the subtrahend, and proceed as before.

Proof. Add the difference or remainder to the subtrahend, and if the sum is equal to the minuend, the work is correct.

For practice with abstract numbers, copy examples from the Drill Table on page 18.

To illustrate: Use the first three columns A, B, and C. For the first example, copy the numbers, each composed of three figures, opposite $\mathbf{1}$ and 2, writing the less number under the greater. For the second example, copy the numbers opposite $\mathbf{2}$ and $\mathbf{3}$; and so on, as follows:

342	473	473	617	764	764	549
$\underline{238}$	$\underline{238}$	$\underline{158}$	$\underline{158}$	$\underline{617}$	$\underline{549}$	$\underline{296}$

In like manner, copy examples from any other three consecutive columns, as B C D, C D E, etc. Then examples oif four figures each from four consecutive columns, as A B C D, B C D E, etc. ; then of five, six, or more figures.

Examples with numbers of four figures each from columns B CDE:

4275	7396	7396	5834	6429
386%	386%	5834	1748	$\underline{1748}$

How many years from the date of each of the following events to the year 1884?
14. Herculaneum and Pompeii destroyed in the year 79.
15. Mariner's compass invented in 1302.
16. Columbus discovered America in 1492.
17. Figures first introduced into Europe in 900.
18. Decimals were invented in 1464.
19. Algebra first known in Europe in 1496.
20. The telescope invented by Jansen in 1598.
21. Printing by cut type invented in 1441.
22. First newspaper published in America in 1704.
23. Robert Fulton built the first steamboat in 1808.
24. First passage of the Atlantic by steam in 1839.
25. First railway in the United States built in 182\%.
26. The electric telegraph first used in the U. S. in 1844.

27 . Watches invented at Nuremberg in 147\%.
28. The pilgrims landed at Plymouth in 1620.
29. The Declaration of Independence was made in $17 \% 6$. Which is the longer period, from the landing of the Pilgrims to the Declaration of Independence, or from the Declaration to 1884?

Numbers composed of dollars and cents must be written, as in addition, in such order that the points will stand in the same vertical line.

When one of the given numbers contains cents and the other does not, fill the vacant places with two ciphers.

	(30.)	(31.)	(32.)	(33.)	(34.)
From	\$750.08	\$306.10	\$534.2\%	\$809.00	\$71.40
Subtract	261.50	129.05	362.00	32\%.18	5.65
(35.)		(36.)	(3\%)		(38.)
4030 men		180% acres.	30040 ton		\$4000.00
1426 "		540 "	2056 "		760.07

Find the difference between
39. 37106 and 24004 . 40. 706000 and 84023 . 41. 125060 and 34202. 42. 207610 and 43570 . 43. 700090 and 60017.
44. $\$ 258.3^{7 \%}$ and $\$ 77.90$. 45. $\$ 50400$ and $\$ 3156.50$. 46. $\$ 15 \% 0.26$ and $\$ 2104.08$. 47. 24680 feet and 9764 feet. 48. 306086 votes and 276005 votes.
49. From 53000 plus 4072 subtract 36420 plus 5200 .
50. From $\$ 672.45$ plus $\$ 510.50$ subtract $\$ 1200$ minus $\$ 475.84$.

5\%. When the sum of two or more numbers is to be subtracted from another.

1. From 4672 subtract $1541+1062+450+76$.

Explanation. Write the numbers as in ad- min $46 \% 2$ dition, the minuend at the top. Then add and subtract thus: $6,8,9$, and 3 more make 12; write 3 in the remainder and carry 1 to the next column. $1,8,13,19,23$, and 4 more make 27 ; write 4 in the remainder, and carry 2 to the next column. $2,6,11$, and 5 more make 16 ; write 5 in the remainder and carry 1. $1,2,3$, and 1 more make 4 ; write 1 in the remainder. Hence the entire remainder is 1543.

Prove the work by adding the remainder and the parts of the subtrahend together, and if correct the sum will equal the minuend.

In solving the applied examples, this method should be used when applicable.

In like manner, solve and prove the following:

Sub.(2.) 8709 Sin. Su.) 24784 3416 1042 764 37

Rem. 3450

WRITTEN EXERCISES.

58. 59. The sum of three numbers is 16832 , and two of them are 5760 and 7325. What is the other number?
1. Find the final remainder in subtracting 3416 as many times in succession as possible from 18633.
2. From the difference between $\$ 4567.50$ and $\$ 984$, subtract the difference between $\$ 2500$ and $\$ 450.75$.
3. The area of the United States is 3026504 square miles, and of Brazil 3956000 square miles. How much does Brazil exceed the United States?
4. Canada contains 686353 square miles, and Mexico, 829916 square miles. How much larger is Mexico than Canada?
5. The yearly income of Mr. A is $\$ 7000$. If he pays $\$ 2800$ general expenses, $\$ 1250$ rent, and $\$ 372.75$ taxes, how much can he save?
6. A man bought a pair of horses and a carriage for $\$ 1600$. He afterwards sold the horses for $\$ 750$, and the carriage for $\$ 560.75$. What did he lose by the sale?
7. Texas contains 274356 square miles, California 188981 square miles, and New York 47156 square miles. How much larger is Texas than California? Than New York and California?
8. I bought a house and lot in the city for $\$ 21800$, giving in exchange a farm worth $\$ 10500$, a mill worth $\$ 5700$, a note for $\$ 1292.60$, and the balance in cash. How much cash did I pay?
9. Mr. Smith bought a city lot for $\$ 2000$. He paid $\$ 125.60$ taxes, $\$ 235.75$ for paving, and then sold it at a loss of $\$ 150$. What did he receive for the lot?
10. A man worth $\$ 10000$ received a legacy of $\$ 5640$. He spent $\$ 2500$ in traveling, and lost $\$ 1 \% 50$ by a bad investment. How much had he left?
11. A merchant engaged in trade with $\$ 12500$, and the first year he lost $\$ 2750.80$, but the second year be gained $\$ 6315.50$. What was he then worth?
12. A grain dealer had in store 12650 bushels of corn, and received 5700 bushels more. He filled one order for 6845 bushels, and another for 4090 bushels. How many bushels were left in store?
13. Two men bought a piece of land for $\$ 6816$, and made improvements that cost $\$ 1173$. They then sold it at a loss of $\$ 300$ to each. What was the selling price?
14. A farmer raised 3750 bushels of grain, of which 1500 bushels was wheat, 1037 bushels corn, 416 bushels barley, and the remainder oats. How many bushels of oats had he?
15. Three men bought a hotel. A paid $\$ 3876.50$, B paid $\$ 736.75$ more than A , and C paid as much as A and B minus $\$ 68 \% .25$. What did C pay? How much more did B and C pay than A ?

For examples 17 to 46 inclusive, find the difference between each set of two numbers, first in columns A and B, then in the columns B and C , and then in C and D .

A	B		C	D
7. 509345.	27. 601405.	37.	3735091.	40087021.
. 445136.	28. $1630 \% 1$.	38.	42500.	7300134.
7643.	29. 297300.	39.	730145.	$16060 \% 00$.
. 51300%	30. 580082.	40.	750249.	8413629.
1. 640908.	31. 870406	41.	984006	51006073.
\$4\%10.36.	32. \$1206.14.	42.	\$84570.60.	\$20000.75.
2561.05.	33. 941.8%	43.	93400.45.	36084.09.
296.74.	34. 400.50.	44.	7036.8\%.	7129.63.
278.41.	35. 1720.0\%.	45.	15600.18.	840\%.40.
3000.00	6. $5 \% 10.1$	46.	22080.	0050

INDUCTIVE EXERCISES.
59. 1. If 8 cents a quart are paid for 3 quarts of milk, how many times 8 cents are paid?
2. How many cents are 8 cents +8 cents +8 cents? What is the sum of 8 cents taken three times?
3. Add by 8 's to 24 . By 3 's to 24 . By 2 's to 24 .
4. If 4 is written 5 times in a column and added, what is the sum? $4+4+4+4+4=? \quad 5+5+5+5=$?
5. How many are five 4 's, or 5 times 4 ? Four 5's, or 4 times 5?
6. Do the results differ? Why not?
7. Add by 4 's to 20 ; by 5 's. How many 4 's in 20 ? 5 's?
8. What is the difference between four '7's and seven 4 's?
9. John bought 8 pencils, at 5 cents each; how many times 5 cents did he pay? How many cents?
10. What is the sum of 5 cents repeated 8 times? 8 times $5=$?
11. What sum is produced by taking $\$ 9$ four times?
12. What is produced by taking ${ }^{7}$ as many times as there are units in 3 ? In 4? In 5? In 6?
13. At 6 dollars a barrel, how many times 6 dollars will ${ }^{7}$ barrels of apples cost?
14. What is the unit of 6 dollars? Of 7% Of the number produced by taking 6 dollars 7 times?
15. Should we repeat $\$ 67$ times, or ${ }^{7} 7$ six times? Why?
16. What will the unit of the number produced always be like? Ans. Like the unit of the number repeated.
60. The process of repeating any number a given number of times is called Multiplication; and the result or sum found is called the Product.
61. The number to be repeated is called the Multiplt cand and the number that shows how many times the multiplicand is to be repeated or added is called the Mul. tiplier.
62. The Multiplicand and Multiplier are called the Factors of the product.

Thus, in the statement, 6 times 9 miles are 54 miles, 54 miles is the product, 6 and 9 are the factors, 9 being the multiplicand and 6 the multiplier.

The difference between factors and parts of a number should be carefully taught.

The factors are multiplied, but the parts are added to produce a number.

Thus, 2 and 4 are factors of 8 ; the parts of 8 are 5 and 3,4 and 4 , 6 and 2 , etc.
63. The Sign of Multiplication is \times. It is read times, or multiplied by.

When placed between two numbers, it shows that the number before it is to be multiplied by the number after it.

Thus, 8×7 is read, 8 multiplied by 7 , or 7 tumes 8 . The expression 8×7 may be read 7 times 8 , or 8 times 7 , since changing the order of the factors does not change the product.
64. Nothing is more essential in business transactions than the ability to reckon with rapidity and accuracy.

The pupil should therefore be able to multiply by any integral number less than 13, without the least hesitation. In order to do this, he must know the multiplication table perfectly, carried as far at least as 12.
65. Multiplication Table.

1	2	3	4	5	6	\%	8	9	10	11	12	
2	4	6	8	10	12	\| 14		16	18 \|	20	22	24
3	6	9	12	15	18	21	\| 24		27	30	33	36
4	8	12	16	20	24	\| 28	$32 \mid$	36	40	44	48	
5	10	15	20	25	30	35	40	45	50	55		
6	12	18	\| 24	30	36	\| 42	48	54	60	66	72	
\%	14	21	28	35	42	\| 49	56	63	70	77		
8	16	24	\| 32	40	48	56\|	64	72	80	88	96	
9	18	27	36	45	54	63	72	81	90	99	10	
10	20	\| 30	40	50	60	70	80	90	100	110	120	
11	22	\| 33	\| 44	55	66	7\%	88\|	99	110	121	13	
12	24	\| 36	48	60	72	84	96	108\|	120	132	144	

DRILL EXERCISES.

66. The following exercises will furnish easy and attractive methods of memorizing the Table:
67. Write on the slate or blackboard a series of 2 's, and under them write the numbers from 1 to 12 ; thus,

2	2	2	2	2	2	2	2	2	2	2	2
$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{6}$	$\frac{4}{8}$	$\frac{5}{10}$	$\frac{6}{12}$	$\frac{7}{14}$	$\frac{8}{16}$	$\frac{9}{18}$	$\frac{10}{20}$	$\frac{11}{22}$	$\frac{12}{24}$

Then say, 1 two is $2 ; 2$ twos are $4 ; 3$ twos are $6 ; 4$ twos are 8 , and so on to 12 twos are 24 . Write the products under each example, and observe that each succeeding product is obtained by adding 2 to the last one.
2. Next erase the products, and rewrite them from memory until they can be given orally and at sight.
3. Then arrange the numbers in the lower line in any order, and give the products orally at sight; thus,

2	2	2	2	2	2	2	2	2	2	2	2
$\underline{3}$	$\underline{5}$	$\underline{6}$	$\underline{2}$	$\underline{7}$	$\underline{4}$	$\underline{1}$	$\underline{8}$	$\underline{11}$	$\underline{9}$	$\underline{10}$	$\underline{12}$

4. Then vary the exercise as follows :

1	2	3	4	5	6	$\%$	8	9	10	11	12
$\underline{2}$											

Write and erase the products under each example, until from memory the result can be given at sight.
5. In the same manner memorize and practice upon the products by 3 's, 4 's, 5 's, 6 's, to 12 's, inclusive.

6\%. The little device here presented may be used to facilitate the preceding operations:

Make a small circle on the slate or board, and around the outside write the numbers from 1 to 12 inclusive, either in order or irregularly.

Write one of the numbers in the centre for a multiplier, as 2 , and commencing at any number in the margin, as at 12 , and going around the circle to the right, read thus: 2 times 12 are 24,2 times 10 are 20 , etc. ; then in like manner read to the left. Then use in rapid succes-

11 sion the figures in the margin for multipliers, and the central figure for the multiplicand, thus: 12 times 2 are 24,10 times 2 are 20 , etc.

The teacher may now point in rapid succession to the numbers in the margin, and the pupil promptly give the products; thus, the teacher points to 12 , the pupil instantly gives the product 24 ; to 10 , he responds, 20 ; to 4 , he says 8 , etc.

Then, by erasing the 2 and inserting any other number, we have a new table or set of products, to be treated in the same manner ; and so for the entire tables.
68. Write or pronounce the second member in each of the following equations:

$4 \times 8=?$	$8 \times 5=?$	$7 \times 8=?$	$9 \times 9=?$
$3 \times 5=?$	$5 \times 7=?$	$4 \times 6=?$	$10 \times 4=?$
$6 \times 4=?$	$9 \times 3=?$	$9 \times 8=?$	$11 \times 5=?$
$.9 \times 6=?$	$6 \times 7=?$	$7 \times 7=?$	$12 \times 3=?$

The pupil may make applied examples for the above. Thus, for 4×8 : "What will 8 oranges cost, at 4 cents each?" Another pupil may solve it ; thus, " 8 oranges will cost 8 times 4 cents, or 32 cents." For 3×5 : "If 3 bushels of apples fill 1 barrel, how many bushels will fill 5 barrels?" etc.

For dictation:
6 times 5 , plus $4=? \quad 9 \times 7-12=? \quad 95-7 \times 12=$?
3 times 8 , plus $9=$? $\quad 9 \times 9+14=$? $\quad 24-10 \times 0=$?
5 times 9 , less $7=? \quad 7+3 \times 10=$? $\quad 0 \times 11+20=$?
8 times 6 , plus $5=$? $\quad 46-5 \times 9=$? $\quad 8 \times 0 \times 9=$?
The above exercises may be extended, at the option of the teacher.

Mental Exercises.

69. 70. What do we mean when we say, multiply 9 by 6 ?
1. In the statement, 8 times 9 are 72 , which number is the multiplicand? The multiplier? The product?
2. Of what number are 7 and 5 factors? 8 and 9 ?
3. What are the two factors of 15 ? 18 ? $25 ? 30 ? 36$?
4. If 9 is one of the factors of 45 , what is the other?
5. How many are 2 times 4 times 6 ? Of what are 2,4 , and 6 factors?
6. What is the cost of 9 tons of coal, at $\$ 6$ a ton?

Analysis. Nine tons of coal, at $\$ 6$ a ton, costs 9 times $\$ 6$, or $\$ 54$,
Find the cost
8. Of 10 oranges, at 4 cents each. At 5 cents.
9. Of 11 yards of cloth, at $\$ 3$ a yard. At $\$ 5$. At $\$ \%$.
10. What is the cost of 9 ploughs, at $\$ 11$ each? At $\$ 12$?
11. What is the cost of 12 hats, at $\$ 5$ each ? At $\$ 7$?
12. At $\$ 12$ each, what is the cost of 7 sheep ? 10 sheep?
13. What will be the cost of 4 barrels of flour at $\$ 10$ a barrel, and 1 ton of coal at $\$ 6$?
14. At $\$ 2$ a bushel, what will be the cost of 6 bags of wheat, each bag containing 3 bushels?
15. George had 9 marbles, and Charles had 5 times as many, less 5. How many had both ?
16. Annie gave 6 cents each for 7 oranges; how much change should she receive for 50 cents?
17. If one man earns $\$ 19$ a week, another $\$ 12$, what will both earn in 3 weeks? In 6 weeks?
18. What is the difference in the cost of 12 cords of wood, at $\$ 4$ a cord, and 9 tons of coal, at $\$ 6$ a ton ?
19. In how many days will 1 horse eat as many oats as 8 horses will eat in 12 days?
20. A tailor cut 16 yards of cloth from a piece containing 25 yards. What was the remainder worth, at $\$ 4$ a yard?
21. How much less than $\$ 75$ will 6 barrels of flour cost, at $\$ 9$ a barrel ? How much more than $\$ 4 \%$?

What is the result:
22. Of 5 times 7 units? Of ${ }^{77} \times 5$? Of 9×6 ? Of $8 \times{ }^{\prime} 7$?
23. Of 5 times 7 tens? Of 70×5 ? Of 80×5 ?
24. Of 5 times 7 hundreds? Of 700×5 ? Of 600×3 ?
25. Of 5 times 7 thousands? Of 7000×5 ? Of 6000×6 ?
26. Of 6×5 ? 60×5 ? 600×5 ? 6000×5 ? 60000×5 ?

Observe that each order of units is independent of every other order in a number, and that to find the product of a given number taken any number of times, each order must be multiplied separately.

Thus, to find 5 times 73 , separate 73 into 7 tens 3 units, or $70+3$, and taking each of these parts 5 times, the sum of the products will be 5 times 73 ; or 5 times 70 plus 5 times 3 equals $350+15=365$.
27. How many are 6 times 41 ? 45 ? 54? 62? 75?
28. How many are 7 times 63 ? 8 times 64 ? 9 times 23 ?
29. At 50 cents a pound, what will 4 pounds of tea cost? 6 pounds? 8 pounds? 10 pounds? 12 pounds?
30. At $\$ 45$ each, what must be paid for 6 cows? 5 cows ? 7 cows? 8 cows? 9 cows?
31. If an express train runs 53 miles an hour, how far will it run in ${ }^{7}$ hours? In 9 hours? In 12 hours?
32. What will be the cost of 32 pairs of boots, at $\$ 5$ a pair? At $\$ 6$? At $\$ 7$? At $\$ 9$?
33. If a clerk earns $\$ 90$ a month, and spends $\$ 50$, how much can he save in 6 months? In 11 months?
34. If a vessel sails 200 miles in 1 day, how far will she sail in 4 days? In 6 days? In 8 days?
35. A tailor has a piece of cloth containing 63 yards; he cuts from it 13 suits, each containing 4 yards. How many yards remain?
36. A man bought 7 tons of hay, at $\$ 15$ a ton, and sold the same for $\$ 20$ more than he gave for it; what did he receive?
37. How much more will 10 pounds of beef cost, at 16 cents a pound, than 10 pounds of pork, at 12 cts. a pound ?
38. A man owing $\$ 100$, gave a cow worth $\$ 30,15$ cords of wood, at $\$ 3$ a cord, and the remainder in money; how much money did he pay?
39. How much less is 8 times 14 than 3 times 44 ?

For dictation:

$$
\begin{aligned}
& 40.7+10,-12, \times 6,+5,-15,-10, \times 3,-8 \\
& +8,-5,+2=? \\
& 41.18-8, \times 3,-15,+10, \times 2,+20,-50,+4 \\
& -10=? \\
& \text { 42. } 24+30,-50, \times 9,+4,-10, \times 2,+10,+5, \\
& -25 . \times 10=?
\end{aligned}
$$

43. $35-18,-7, \times 4,+6,-26,-12, \times 8,+6,-30$, $+7=$?
44. $15 \times 3,+5,-25,+9,-17,-10, \times 12,+6,+10$, $-50=$?
45. $12 \times 12,-100,+6,-40, \times 2, \times 3,+12,-60$, $\times 10,+8=$?
46. $200-150, \times 2,-60,+10,-30, \times 4,+15,-5$, $\times 10,-40=$?
4\%. $40+23,+7,-50, \times 2,+5,-15,-20, \times 3,+25$, $-9,+4,-18=$?

7O. Principles. I. The multiplicand may be either an abstract, or a denominate number.
II. The multiplier is always an abstract number.
III. The product and multiplicand are like numbers.
IV. The product of any number of factors in continued multiplication will be the same, in whatever order they are taken.

When one of the factors is a concrete number, it is the true multiplicand; but when it is the smaller, it is often used for convenience, abstractly, as the multiplier.

2DE FINITTONSC

\%1. The Product of two or more numbers is the result obtained by repeating one number as many times as' there are units in the other. Or,

It is the sum of the same number taken a given number of times.
\%2. Multiplication is the process of finding the product of two numbers.
183. The Multiplicand is the number to be multiplied.
\%4. The Multiplier is the number by which we multiply, and shows how many times the multiplicard is to be taken.

WRITTEN EXERCISES.
195. When the multiplier consists of but one order of units.

1. Multiply 286 by 4.

Explanation. Since the anits, tens, and hundreds in 286 are each required to be taken 4 times, the result may be found by writing 286 four times in a column and finding the sum.

FIRST OPERATION.
$\left.\begin{array}{l}286 \\ 286 \\ 286 \\ \mathbf{2 8 6}\end{array}\right\} \underset{ }{\text { Equal }}$ Parts.

1144 Sam.

Explanation. The preceding process can be very much shortened by writing the multiplicand 286 but once; and since

SECOND OPERATION.

Muitiplicand,	286	$=200+80+6$
Multiplier,	$\frac{4}{14}$	$=\frac{4}{4}=\frac{4}{800+320+24}$
Product,	1144	

Then 4 times 8 tens are 32 tens, and 2 tens reserved added make 34 tens, or 3 hundreds 4 tens. Write the 4 tens in tens' place, and reserve the 3 hundreds to be added to the product of the hundreds.

Lastly, 4 times 2 hundreds are 8 hundreds, and 3 hundreds reserved added make 11 hundreds, or 1 thousand 1 hundred, which write in the hundreds' and thousands' places. Hence, the product 1144 is the same as the sum of its equal parts obtained by addition.

	(2).	(3).	(4).	(5).
Multiply	$4^{\text {ry }}$	3264	$180^{\prime y}$	46251
by	6	5		8
Product,	$\frac{6850}{285}$	16320	-	-

6. Multiply 1341 feet by 6 ; by 4 ; by 7 ; by 8 ; by 9 .
7. Multiply $\$ 3245$ by 3 ; by 6 ; by 5 ; by 9 ; by 8 .
8. What will be the cost of 8 horses, at $\$ 326$ each ?
9. What cost 9 lots of land, at $\$ 1248$ each? at $\$ 950$ each?
10. What is the cost of 12 acres of land, at $\$ 206$ an acre?
11. At $\$ 8463$ each, what is the cost of 9 palace cars?
12. What is the cost of building 11 houses, at $\$ 2560$ each ?
13. A grocer bought, 9 barrels of sugar, at $\$ 23$ a barrel, and sold the whole for $\$ 245 . \% 5$. What was his gain?
14. A farmer sold 5 horses, at $\$ 216$ each, and 137 sheep, at $\$ 6$ each ; what did he receive for all?
15. What will 384 barrels of flour cost, at $\$ 8$ a barrel?

We may use 384 for the multiplicand, reasoning as follows : If the flour was at $\$ 1$ a barrel, the cost would be $\$ 384$; hence, at $\$ 8$, it would be 8 times $\$ 334$. (See Note, p. 49.)
16. If a man travels 9 miles an hour, how far will he travel in 684 hours? In 1256 hours?
17. What cost 420 yards of cloth, at $\$ 5$ a yard? at $\$ 7$?
18. Find the cost of 596 barrels of flour, at $\$ 8$ a barrel?
19. At 9 cts. a pound, what is the cost of 125 pounds of sugar? Of 256 pounds?

When either factor contains cents, the product is cents, which may be changed to dollars and cents by inserting the point (.) two places from the right, and placing the sign $(\$)$ at the left. Thus, 9 cts. $\times 125=1125$ cts. $=\$ 11.25$.

What will be the cost
20. Of ' 796 pounds of grapes, at 5 cts. a pound? at ' 7 cts ?
21. Of 1248 pounds of rice, at 7 cts . a pound? at 9 cts ?
22. Of 9 barrels of potatoes, at $\$ 4.75$ a barrel ? at $\$ 3.87$?
23. Of 8 rods of fence, at $\$ 12.25$ a rod ? at $\$ 1 \% .68$?

Multiply each of the following numbers by each of the numbers from 2 to 12 inclusive :

24. 237.	28. $\$ 42.63$.	32.32014.	36. 180624.
25. 438.	29. $\$ 84.31$.	33.40370.	37.246030.
26. 620.	$30 . \$ 65.74$.	34.56781.	38. 637819.
27. 734.	31. $\$ 75.24$.	35.81009.	39.708063.

$\%$ \%

	A	B	C	D	E	F	G	H
1.	4	9	2	6	5	7	12	40
2.	1	3	4	8	2	5	9	200
6.	7	6	8	4	4	3	10	12
4.	3	8	2	5	7	9	11	40
5.	9	3	6	7	3	5	30	400
6.	5	r	3	6	8	4	8	350
7.	6	4	5	2	7	6	50	80
8.	8	5	4	3	6	7	15	120
9.	2	9	6	7	5	8	9	500
10	5	2	8	3	4	3	20	640
11	9	3	2	6	9	5	12	300
12	7	8	5	9	3	6	26	700
13.	4	2	3	- 5	7	9	40	70
14.	6	5	7	3	4	2	90	200
15.	8	1	6	4	5	7	10	910
16.	2	8	4	7	3	5	9	800

Drill Table No. 2 will furnish all the additional exercises for the slate and board that will be required.

When the multiplicand contains three figures, and the multiplier, one figure, copy the figures opposite $\mathbf{1}, \mathbf{2}, \mathbf{3}$, etc., in columns A B C for multiplicands, and for multipliers use the figure directly under or over the right-hand figure of each multiplicand. Thus,

(1).	(2).	(3).	(4).	(5).	(6).
492	134	768	382	936	573
4	8	2	6	3	5

In the same manner, copy examples from columns B C D, C D E, D E F, etc.

In like manner, copy from the several columns, commencing opposite $\mathbf{1}$, multiplicands containing four, five, or more figures, using the figure durectly under or over the right-hand figure of each muetiplicand for a multiplier.
r\%. When the multiplier consists of two or more orders of units.

1. Multiply 673 by 235.

Explanation. Write the multiplier under the multiplicand, like orders of units in the same column (42).

Since the multiplier consists of 5 units, 3 tens, 2 hundreds, the multipli-

Multiplicana,	673
Multiplier,	$\underline{235}$
1st Partial Prod.,	$\underline{3365}=673 \times 5$
2d Partial Prod.,	$2019=673 \times 30$
3d Partial Prod.,	$\underline{1346}=673 \times 200$
Entire Product,	$158155=673 \times 235$

5 times 673 is 3365 , the first partial product ; 3 tens or 30 times 673 is 20190 , the second partial product; and 2 hundreds or 200 times 673 is 134600 , the third partial product. The sum of these partial products is the entire product 158155 .

In practice we omit the ciphers at the right of the partial products.
2. Multiply 876 by 56 ; by 75 ; by 127 ; by 243 .

Rule. 1. Write the multiplier under the multiplicand, placing units of the same order in the same column.
2. Multiply each order of units of the multiplicand by each order of units of the multiplier successively, uriting the unit figure of each partial product under the order of the multiplier used. The sum of the partial products will be the product required.

When ciphers occur between the significant figures of the multiplier: pass over them, and multiply by the significant figures only.
3. Multiply 2468 by 215 ; by 324 ; by 146 ; by 266 .
4. Multiply 36072 by 205 ; by 276 ; by 308 ; by 436 .
5. Multiply $\$ 645.36$ by 72 ; by 108 ; by 66 ; by 263 .

Find the value
6. Of 64 railway coaches, at $\$ 9045.75$ each.
7. Of 456 acres of land, at $\$ 108.50$ an acre.
8. Of 2625 bushels of wheat, at $\$ 1.75$ a bushel.
9. Of 277 hogsheads of molasses, at $\$ 5 \% .25$ a hogshead.
10. Bought two farms ; one containing 217 acres at $\$ 57$ an acre, the other 326 acres at $\$ 48$ an acre. What was the cost of both? What the difference in their cost?

Multiply

11. 30742 feet by 178.
12. 340% days by 406 .
13. $\$ 762.84$ by 562 .
14. 81794 cts. by 208.
15. 40306 pounds by 97 .
16. 134062 quarts by 346 .
17. $\quad 37012 \times 1242=?$
18. $\quad \$ 460.76 \times 804=?$
19. $\quad 560036 \times 2423=?$
20. $\quad 764209 \times 846=?$
21. $135062 \times 3405=?$
22. $3027061 \times 20674=?$
23. For additional examples when the multiplier contains two or more figures, copy from Drill Table No. 2.

Commencing opposite 1, copy multiplicands containing three, four, five, or more figures from columns A B C D, etc., and for the multipliers use the figures directly under the right-hand figures of the multiplicand. Thus,

(1).	(2).	(3).	(4).	(5).	(6).
4926	1348	7684	3825	9367	5736
48	84	-25	-67	36	52

In like manner, copy examples from columns B C D E, C D E F, etc.

Then copy multiplicands with five, or more figures and multipliers with three, or more figures.
\%9. To multiply by the factors of a number.
80. The Factors of a number are the numbers which multiplied together produce that number.

Thus, 18 is composed of three 6 's, or six 3 's; of two 9 's, or nine 2 's; hence 3 and 6 , and 2 and 9 are the factors of 18.
81. The process of finding the product of several factors, by multiplying the first by the second, and the result by the third, and so on, is called Continued Multiplication.

Thus, $86 \times 24=2064$, or $86 \times 6 \times 4=2064$, or $86 \times 4 \times 3 \times 2=2064$. It is obvious that the product will be the same whether the multiplicand be multiplied by the multiplier or by any set of factors of which the multiplier may be composed (Prin. IV).

Multiply

| Factors. |
| :--- | :--- | :--- |$|$| 4. $\$ 643.26$ by 96. | |
| :--- | :--- |
| 1. $\quad 3462$ by 36, or by 9×4. | 863% by 72, or by $6 \times 4 \times 3$. | 5. 30762 by 108.

82. When there are ciphers at the right of one or both factors.

1. Multiply 375 by 100 .

Explanation. Annexing one cipher to a number removes each order of units one place to the left, and thus increases its value ten times, or multiplies it by 10. For the same reason, annexing two ciphers multiplies by 100 , etc. ($\mathbf{1 5}, \mathrm{III}$).

OPERATION.
375
100
37500
2. Multiply 850 by 500 .

Explanation. The multiplicand is equal to 85×10, and the multiplier to 5×100; these taken in any order will give the same result. Hence, first multiply 85 by 5 , and the product 425 by 10×100, or annex three ciphers, and the entire product is 425000 .

OPERATION.
850
500
425000

Rule. To the product of the significant figures annex as many ciphers as there are on the right of both factors.
3. Multiply 370 by 10 ; by 100 ; by 60 ; by 250 .
4. Multiply 1360 by 140 ; by 700 ; by 9000 ; by 6700 .
5. Multiply 2460 by 200 ; by 480 ; by 5000 ; by 2500 .
6. Multiply 6304200 by 500 ; by $2 \% 00$; by 3040 .
7. What is the continued product of 310,7060 , and 600 ?
8. What is the value of 150 barrels of beef, each containing 220 pounds, at 15 cents a pound? At 20 cents?
9. At 64 cents a bushel, what are 46 acres of corn, averaging 36 bushels to the acre, worth ?
10. Find the cost of 60 sacks of coffee, each containing 56 pounds, at 28 cents a pound; at 30 cents.
11. What is the value of 115 pieces of cloth, each piece containing 48 yards, at $\$ 3.75$ a yard ? If cach piece contained 60 yards, at $\$ 4.45$ a yard?
12. A barrel of salt weighs 280 pounds; what is the weight of 300 barrels? Of 450 barrels?
13. How many yards of muslin in 67 bales, each bale containing 35 pieces, and each piece 48 yards? What is its value, at 14 cents a yard?

Perform the multiplication of the following:

14. $5640 \times 80 . \mid 17 . \$ 360.09 \times$ 72. $\mid 20 . \quad 840 \times 200 \times 75$. 15. $300^{7} \times 600$. 18. $\$ 403.50 \times 60$. $21.3214 \times 304 \times 90$.	16. 8621×320.	19.
$\$ 25600 \times \%$. $22.4006 \times 1200 \times 64$.

Complete the following equations:

23. $7 \times 12+16-20=$?	28. $17+13-5 \times ?=10$.
24. $9 \times 8-12=5 \times$?	29. $14 \times 0 \times 7+35=7 \times$?
25. $7 \times 20-5 \times 25=$?	30. $56-40+8=? \times 8$.
26. $84-(6 \times 11+10)=$?	31. $10 \times 12+20=150-$
6-24 $\times 8=100$	32. $(5 \times 20-75+5) \times$

The operations of multiplication, indicated by signs, must be performed before those of addition and subtraction. unless otherwise indicated.

Written ExERCises.

S3. 1. The sum of three numbers is 1586 ; the least is 218 , and the greatest 934 ; what is the third number, and the product of the three?
2. Maltiply 6 times the difference between $\$ 29045$ and $\$ 14000$ by the sum of 462 and 208 .
3. What is the sum of $\$ 426.25 \times 97$ and $\$ 84.05 \times 146$?
4. Multiply 1736 increased by 78 times 156 by 4756 diminished by 26 times 6%.
5. A produce dealer bought 1488 barrels of potatoes at $\$ 3.66$ a barrel, and sold them at $\$ 4.28$ a barrel. What did he gain?
6. What is the difference in the cast of 174 head of cattle, at $\$ 47.50$ a head, and 1240 head of sheep at $\$ 6$ a head?
7. Paid $\$ 15675$ for a farm of 275 acres, and sold the same for $\$ 63$ an acre; what was the whole gain?
8. A drover paid $\$ 42.50$ a head for 216 head of cattle, $\$ 9.40$ a head to get them to market, and then sold them for $\$ 55$ a head ; what was the gain?
9. A young man receiving a salary of $\$ 1500$ a year, pays $\$ 425.75$ for board, $\$ 1 \% 5$ for clothing, $\$ 84.75$ for books, $\$ 150$ for donations, and $\$ 163.87$ for other expenses; how much can he save in 6 years? In 10 years?
10. A miller exchanged 175 barrels of flour at $\$ 7.84$ a barrel, for 860 bushels of wheat at $\$ 2$ a bushel, paying the balance in money; how much money did he pay?
11. A railroad company having built 286 miles of road, at $\$ 12745$ a mile, paid $\$ 1500000$; what did they still owe?
12. What was the weight and value of a crop of cotton which was put up in 394 bales, averaging 568 pounds each, and valued at 17 cents a pound ?
13. What is the cost of the rails for a railroad 184 miles long, if 126 tons are required to the mile, at $\$ 58.50$ a ton ?
14. What is the difference in the value of 920 bushels of wheat at $\$ 1.84$ a bushel, and 375 barrels of flour at $\$ 7.50$ a barrel?
15. A house is worth $\$ 24 \% 5$; the farm on which it stands is worth 6 times as much less $\$ 1250$, and the stock on the farm is worth $\$ 750$ more than 3 times the value of the house. What is the value of the whole, and of the farm and stock respectively?
16. A grocer bought 12 barrels of sugar at $\$ 16$ a barrel, and 1% barrels at $\$ 13$ a barrel; how much would he gain by selling the whole at $\$ 18$ a barrel?
17. Bought two farms worth $\$ 4550$ each, 20 shares of railroad stock at $\$ 106$ per share, and had $\$ 250$ left. How much had I at first?
18. A grocer bought 15 tubs of butter, each containing 48 pounds, at $\$.28$ a pound, and sold the same for $\$.35$ a pound. What was his gain?
19. A coal dealer bought 10 car loads of coal, each car containing 12 tons, at $\$ 4.25$ a ton. He sold 50 tons at $\$ 5.40$ a ton, 36 tons at $\$ 6$ a ton, and the remainder at $\$ 6.20$ a ton. How much did he make by the transaction?
20. Multiply ${ }^{7} 520+\overline{12500-10 \% 5} \times 7$ by 6 times the difference between 973 and $1000-368$.
21. Multiply $\overline{9760+1} \overline{2} 4 \overline{2} \times 12-32400$ by $1524-4 \times 350$.
22. Multiply $1425+84 \times 65-750$ by 12 times 16 .
23. $(\overline{1462+684} \times \overline{5000-4 \times 1240}) \times 70=$?
24. $\$ 786 \%$. $75-\$ 3650+\$ 10600 \times 286-156=$?
25. $\$.8^{77} \times 32700+\$ 10500-(\$ 15376.40-\$ 14700.50)$ $\times 24=$?
26. $756400-3900 \times 70+(\overline{167+328} \times 1260-40 \times 30)$

IVISIONTET

INDUCTIVE EXERCISES.

84. 85. How many feet are 12 feet less 6 feet, less 6 feet? 12 feet -4 feet -4 feet -4 feet? $\quad 12$ feet -3 feet -3 feet -3 feet -3 feet?
1. How many times can 6 feet be taken from 12 feet? 4 feet from 12 feet? 3 feet from 12 feet?
2. How many 6 's in 12 ? How many 4's? 3's? 2's?
3. How many times can 5 pounds of tea be taken from a box containing 30 pounds? How many 5's in 30 ?
4. Into how many equal parts are 30° pounds separated? What is the size of each part? 5 pounds is contained in 30 pounds how many times?
5. Thirty is how many times $5 ? 6$? 10 ? 3 ?
6. Distribate 30 pounds of tea equally among 6 families; how many pounds will each receive?
7. Can we say 6 families are contained in 30 pounds of tea 5 times? Why not?
8. Can we subtract 6 families from 30 pounds of tea 5 times? Why not?
9. How then shall we find one of 6 equal parts of 30 pounds of tea?

One of the 6 equal parts of 30 pounds of tea is 5 pounds, since six 5's or 6 times 5 make 30 .
11. What is one of 6 equal parts of 30 pounds? Of 42 feet?
12. What is one of 3 equal parts of 30 pounds? Of 27 acres?
13. When we say, 7 cents is contained in 63 cents, is the result denominate or abstract?
14. When we say, one of 7 equal parts of 63 cents, is the result denominate or abstract?
85. The process of finding how many times the same number may be taken from a given number, or of finding one of the equal parts into which a number may be divided, is called Division, and the result obtained is called the Quotient.

Thus, if 24 marbles are divided equally among a number of boys, giving each boy 6 marbles, how many boys are there?

Here the whole number and one of the equal parts are given, to find the number of equal parts.

Again, if 24 marbles are divided equally among 4 boys, how many marbles will each boy receive?

Here the whole number and the number of equal parts are given, to find the size or value of one of the equal parts.
86. The number to be divided into equal parts of a known size, or which is to be separated into a given number of equal parts, is called the Dividend.

Thus, in the above examples, 24 marbles is the dividend.
8\%. One of the equal parts into which the dividend is to be divided, or the number of equal parts into which the dividend is to be divided, is called the Divisor.

Thus, in the first example, 6 marbles is the divisor ; and in the second, 4 is the divisor.
88. Division may be regarded as the reverse of multiplication, since in multiplication both factors are given to find the product; while in division, one factor and the product (answering to the divisor and dividend) are given to find the other factor, called the Quotient.

Thus, $9 \times 4=36$, the factor 9 being taken 4 times gives the product 36 ; hence, there are four 9 's in 36 , or 9 is contained in 36,4 times.
89. If anything remains after dividing the dividend, it is called the Remainder, and it must always be less than the divisor.

When there is no remainder, the division is said to be exact, and the dividend is the product of the divisor and quotient, and each expresses one of the equal parts into which the dividend may be separated.

Thus, 8 is contained in 32,4 times ; the divisor 8 expresses one of the four equal parts of 32 , as also the quotient 4 expresses one of the eight equal parts of 32 .
90. The Sign of Division is \div. It is read, divided by.

When placed between two numbers it shows that the one on the left is to be divided by the one on the right.

Thus, $63 \div 7=9$ is read, 63 divided by 7 equals 9 , and signifies that there are nine 7 's in 63 , or 7 is contained in 63,9 times, since 9 times 7 is 63 .
91. Division is also indicated by writing the dividend above and the divisor below a short horizontal line.

Thus, $\frac{18}{6}$ is read, 18 divided by $6 ; \frac{56}{8}=7$ is read, 56 divided by 8 equals 7 .

> Drill ExERCises.
92. 1. First, to find at sight how many times any number from 2 to 12 inclusive, used as a factor, is contained in the several products taken from the Multiplication Table, the result being the other factor.

Thus, begin with the products which have 2 as one factor, taken in any order, and find how many 2 's in $0,8,12,18$, etc.

Written, $2 \underline{)} \frac{6}{3} \quad \underline{1} \frac{8}{4} \quad 2 \underline{12} \quad 2 \underline{18} \quad 2 \underline{20} \quad 2 \underline{24}$, etc.
Write under the products the number of 2 's each contains, which is the other factor, and say, 2 's in 6 , three ; 2's in 8 , four ; 2's in 12 , six, etc.

The number at the left of the curred line is the divisor, the one at the right the dividend, and the result obtained is the quotient.

Thus, 2$) 6$ may be expressed, $6 \div 2$.
2) $\frac{16}{8}$ is the same as $16 \div 2=8$, read, 16 divided by 2 equals 8 .

Erase and rewrite the quotients, until they can be promptly given from memory.
2. Practice in the same manner upon the products which have $3,4,5,6$, to 12 inclusive, as factors taken from the table.
3. Divide by 2 orally, from 2 in 2 , to 2 in 24 .

Thus, 2 in 2, once; 2 in 4, twice; 2 in 6, 3 times; 2 in 8.4 times, etc
Also the following:
4. 3 in 3 , to 3 in $36 . \quad 9.8$ in 8 , to 8 in 96.
5. 4 in 4 , to 4 in 48 .
6. 5 in 5 , to 5 in 60 .
7. 6 in 6 , to 6 in 72 .
8. 7 in 7 , to 7 in 84 .
10. 9 in 9 , to 9 in 108.
11. 10 in 10 , to 10 in 120.
12. 11 in 11, to 11 in 132.
13. 12 in 12 , to 12 in 144.
14. Reverse the above; thus, 2 in 24,12 times; 2 in 22,11 times; 2 in 20,10 times, etc.
15. Then combine; thus, 3 in 3, once; 3 in 6, toice; 2 in 6 . 3 times; 3 in 12,4 times; 4 in 12, 3 times, etc.

Express by the proper signs the following and their answers; thus, How many 3 's in 12 ? $12 \div 3=4$, or $\frac{12}{3}=4$.
16. How many 6 's in 24 ? In 48 ? In 54 ? In 60 ? In 36 ?
17. How many 8 's in 40 ? In 64 ? In 72? In 96 ? In 80 ?
18. How many 9 's in 36 ? In 45 ? In 90 ? In 63 ? In 81 ?
19. How many 10 's in 40 ? In 70? In 50? In 100?
20. How many 12 's in 48 ? In 60 ? In 84 ? In 96 ?
21. How many times 6 men are 48 men? 5 feet are 45 feet? 7 days are 84 days? 8 cents are 72 cents?

For dictation:

93. This last form of indicating division is often used to simplify two or more operations to be performed in the same example. Thus,

Multiply 12 by 6 and divide the product by 8 may be expressed, $\frac{12 \times 6}{8}=9$, since $12 \times 6=72$, and $72 \div 8=9$.

To 10 times 9 add 6 and divide the sum by 12 .
Written, $\frac{10 \times 9+6}{12}=8$, since $10 \times 9=90$, and plus 6 is 96 , and $96 \div 12=8$.

Express by sugns each of the following :

1. Divide 7 times 9 plus 3 , by 11.
2. Divide the difference of 36 and 12 , by 8 .
3. Divide the product of 12 and 5 , by 10 .
4. Divide the sum of 4 times 8 and 5 times 8 , by 6 .
5. From the sum of 24 and 16 subtract 12 , and divide the remainder by $\%$.

What is the value of the following expressions?
(6.)
(\%)
(8.)
(9.)

$\frac{45-15}{6}$.	$\frac{11 \times 6+6}{9}$.	$\frac{8+6 \times 12}{10}$.
(10).	$\frac{71}{5} .9-13$	
(12).		

$\frac{8 \times 3+3 \times 10}{9} . \quad \frac{12 \times 6-4 \times 8}{4} . \quad \frac{42+38-20}{3 \times 4}$.
The operations of multiplication and division, when indicated by signs, mnst be performed before those of addition and subtraction, unless otherwise indicated.

MENTAL EXERCISES.

94. 95. How many times can 6 cents be taken from 42 cents? from 54 cents? from 60 cents? from 72 cents?
1. How many times $\%$ feet make 42 feet? 63 feet?
2. The product of two factors is 54 rods, and one of the factors is 9 rods; what is the other? Why?
3. If the product of two factors is 63 bushels, and one of the factors is "\%, what is the other? If ${ }^{7}$ bushels?
4. If the dividend is $7 / 2$ and the divisor 8 , what is the quotient? If the divisor is $9 ? 6$? 12 ?
5. If the quatient is 9 , and the divisor 8 , what is the dividend? Why?
\%. If the dividend is \%\%, and the quotient 8, what is the divisor? Why?
6. At $\$ 6$ a ton, how much ice can be bought for $\$ 54$?

Avalysis. As many tons, as $\$ 6$ is contained times in $\$ 54$, which is 9 times. Hence, 9 tons can be bought for $\$ 54$
9. At "y cts. a quart, how many quarts of milk can be bought for 56 cts. ? for 63 cts. ? for ${ }^{\text {\% }} 0 \mathrm{cts}$? for 84 cts .?
10. How many days' labor, at $\$ 4$ a day, will pay for 12 yards of cloth, at $\$ 3$ a yard?

Analzess. Twelve yards of cloth, at $\$ \mathbf{3}$ a gard, will cost $\$ 36$; and $\$ 4$, the price of 1 day's labor, is contained in $\$ 36,9$ times. Hence, 9 days' labor vill pay for 12 yazds of cloth.
11. Six pounds of meat, at 12 cents a pound, are worth how many pounds of rice, at 8 cents a pound?
12. How many 5 -dollar bills will pay for 9 cords of wood, at $\$ 4$ a cord, and 4 barrels of flour, at $\$ 6$ a barrel?

For dictation:

13. 3 times 8 , divided by $6=$? $1 \% \cdot(36-16) \div 5=$?
14. 3 times 12 , divided by $9=$? 18. $(60-20) \div 8=$?
15. 12 times 6 , divided by $8=$? 19. $(49-13) \div 9=$?
16. 3 times 8 , divided by $12=$? $20 .(24+30) \div 6=$?

Find one of the
21. 2 equal parts of 14 .
22. 3 equal parts of 2%.
23. 4 equal parts of 40 .
24. 5 equal parts of 60 .
25. 6 equal parts of 54. 26. 7\% equal parts of 77. 27. 8 equal parts of 64. 28. 9 equal parts of 108.
29. How is one of 2 equal parts of a number found? One of 3 equal parts? One of 4 ? Of 5 ? 6 ? 7 ? 8? 9 ? 10?

The names of the equal parts of a thing, or number, vary according to the number of the parts. Thus,

One of 2 equal parts is named one half, written $\frac{1}{2}$, which signifies 1 divided by 2 . $\frac{1}{2}$ of 12 is $12 \div 2=6$.

One of 3 equal parts is named one third, written $\frac{1}{3}$, which signifies 1 divided by 3 . $\frac{1}{3}$ of 24 is $24 \div 3=8$.

One of 4 equal parts is named one fourth, written $\frac{1}{4}$, which signifies 1 divided by 4 . $\frac{1}{4}$ of 48 is $48 \div 4=12$.
In like manner we obtain the names of fifths, sixths, sevenths, eighths, tenths, twelfths, twentieths, etc.
The equal parts into which a unit is divided are called Fractions.
30. If an acre of land is divided into 2 equal parts, what is each part called ? If into 3 equal parts? 4? 5? 6? 7? 8? 10 ? 12 ? 15 ? 20? 45 ?
31. What is one third ($\frac{1}{3}$) of 12 months? One fourth (1) of 28 days?
32. What is one fifth ($\frac{1}{5}$) of $\$ 60$? One sixth ($\left(\frac{1}{6}\right)$ of 60 ?
33. If 48 cts . are equally divided among 6 boys, what part of 48 cents will each boy receive? If among 8 boys?
34. If $\$ 30$ are paid to 5 men in equal parts, what part of $\$ 30$ is paid to 1 man? If paid to 3 men? To 6 men?
35. What is $\frac{1}{4}$ of 36 pounds? $\frac{1}{5}$ of 40 men? $\frac{1}{6}$ of 54 acres? 36. What is $\frac{1}{7}$ of 63 gallons? $\frac{1}{8}$ of 72 pints? $\frac{1}{9}$ of 81 men ?
37. What is $\frac{1}{10}$ of 100 rods? $\frac{1}{11}$ of $\$ 88$? $\frac{1}{11}$ of 120 days?
38. How do we find $\frac{1}{4}, \frac{7}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{8}$, ctc., of any number ?
39. If 9 men pay $\$ 63$ for the use of a room, what does each man pay?

ANAlusis. Each man pays one ninth $\left(\frac{1}{3}\right)$ of $\$ 63$, which is $\$ 7$.
40. If a man pays $\$ 96$ for the rent of his house 8 months, what is his rent for 1 month?
41. What is $\frac{1}{4}$ of $48 ? \frac{1}{2}$ of $\frac{1}{4}$ of $48 ? \frac{1}{2}$ of 4 times $12 ? \frac{1}{3}$ of $\frac{1}{5}$ of 60 ? $\frac{1}{6}$ of $\frac{1}{2}$ of 24 ? $\frac{1}{7}$ of 5 times 14? 4 times $\frac{1}{8}$ of 64 ?
42. How many are 8 times $\frac{1}{6}$ of 42 feet? 9 times $\frac{1}{7}$ of $\$ 63$?
43. How many are 10 times $\frac{1}{3}$ of 36 days? 7 times $\frac{1}{12}$ of $\$ 96$?
44. If 7 yards of cloth cost $\$ 35$, what will 9 yards cost?

Analysis. One yard will cost $\frac{1}{7}$ of $\$ 35$, or $\$ 5$; and 9 yards will cost 9 times $\$ 5$, or $\$ 45$. Hence, etc.
45. What will 12 pounds of beef cost, if 5 pounds cost 60 cents?
46. If a man earns $\$ 84$ in 7 weeks, how much does he earn in 3 weeks? In 5 weeks? In 8 weeks? In 12 weeks?

4\%. If a man build 81 rods of fence in 9 days, how much does he build in 5 days? In 7 days?
48. If 7 yards of silk cost $\$ 27$, for how much a yard should it be sold, to gain $\$ 8$? To lose $\$ 6$?
49. If a man pay 75 cents for 6 pounds of meat, and receive back 15 cents, what is the price of the meat a pound ?
50. How many times is $\frac{1}{8}$ of $\$ 56$ contained in $\$ 63$? $\frac{1}{8}$ of 84 cents contained in 60 cents? $\frac{1}{9}$ of 81 yards contained in 108 yards?
51. If 6 coats can be cut from 30 yards of cloth, how many can be cut from 45 yards?

Analysis. One sixth of 30 yards is 5 yards, and 5 yards is con tained in 45 yards, 9 times. Hence, etc.
52. If y tons of coal can be bought for $\$ 42$, how many tons can be bought for $\$ 54$? For $\$ 60$? For $\$ 72$?

For dictation :
53. $\frac{1}{3}$ of 27 , plus $42=$?
54. $\frac{1}{5}$ of 60 , plus $28=$?
55. $\frac{1}{8}$ of 96 , plus $64=$?
56. $\frac{1}{9}$ of 108 , minus $7=$? $\quad 60$. $\frac{1}{9}$ of $\overline{19+44}=$?
61. $80+4, \div 7, \times 12,-44, \div 10,+25,-15=$? Read, 80, 84, 12, 144, 100, 10, $35=20$.
62. $12 \times 3, \div 4,+26,-5, \div 10, \times 12,+4,-20=$?
63. $108 \div 12,+9,+10, \div 7, \times 11,-14, \div 6,+50=$?
64. $72-48,+6, \div 10,+67,-10, \div 12, \times 9=$?
65. $50+50,-75, \div 5, \times 11,+15,-4, \div 11=$?
66. How do we obtain one third of a number? two thirds? one fourth? three fourths?
6% What part of 4 is 1 ? is 2 ? is 3 ?
Analysis. One is $\frac{1}{4}$ of $4 ; 2$ is 2 times $\frac{1}{4}$ or $\frac{2}{4}$ of $4 ; 3$ is 3 times $\frac{1}{4}$ of 4 , or $\frac{3}{4}$ of 4.
68. What part of 5 pounds is 1 pound ? 2 pounds? Of 0 quarts is 1 quart? 2 quarts? 4 quarts? 5 quarts?
69. What part of 8 is 3 ? Of ${ }^{7}$ is 2 ? Of 9 is 5 ?
70. Nine are how many times 4 ?
analysis. Four in 9, 2 times and 1 remainder, which is $\frac{1}{4}$ of 4. Hence, 9 is 2 times 4 and $\frac{1}{4}$ of 4 .
71. 16 are how many times 5 ? Ans. 3 times 5 and $\frac{1}{5}$ of 5 . 72. 43 are how many times 8 ? Ans. 5 times 8 and $\frac{3}{8}$ of 8 .
r3. 45 are how many times 4? 5? 6? 7? 8? 9? 10 ?
74. 60 are how many times 5 ? 6? 7? 8? 9 ? 10 ? 11? 12?

The preceding exercises and examples are intended simply as models, or forms, each to be largely increased, at the option of the teacher.

The pupil should be able to divide rapidly all the numbers from 12 to 100 by all the numbers less than 13.

This can be accomplished in a short time by spending a few minutes of each day's recitation in thorough drill.

The work may be prepared on the slate in the following form, $\frac{48}{4}=? \frac{48}{6}, \frac{48}{6}, \frac{48}{7}, \frac{48}{5}$, etc., and the answers given orally, not written.

The same device used to teach rapid multiplication ($\mathbf{6 \%}^{\mathbf{1 8}}$) may be used here also to great advantage.

Place a small circle on the slate or blackboard, and write the numbers from 1 to 12 inclusive around the outside of it, as divisors.

Then use each of the numbers from 12 to 100 successively as a dividend, written in the centre of the circle, and divide orally the central number by each of the numbers outside the circle, pronouncing results only, as rapidly as possible. Commencing with any divisor, as 12 , read to the right around the cir-
 cle, thus, 48 is 4 times 12,8 times 6,12 times 4,4 times 10 and $\frac{8}{10}$ of 10,6 times 7 and $\frac{6}{7}$ of 7, etc. In the same manner, commence and read to the left. Then erase the central number, and insert some other number for the dividend, and treat in the same manner.

Principles of Division.

95. 96. When the object of the division is to find how many times one number contains another:
I. The divisor and dividend are like numbers, and the quotient is an abstract number.
1. When the object of the division is to find one of the equal parts of a number :
II. The dividend and quotient are like numbers, and the divisor an abstract number.
III. The result of the continued division of the dividend by one number, and the resulting quotient by another, and so on, is the same in whatever order the divisors are taken.
IV. The product of the divisor and quotient, plus the remainder, if any, equals the dividend.

2DEFINITIONSC

96. A Quotient shows how many times one of two like numbers is contained in the other. Or,

It is one of the equal parts of a number.
9\%. Division is the process of finding the quotient.
98. The Dividend is the number to be divided.
99. The Divisor is the number by which we divide.

> WRITTEN EXERCISES.

100. To divide by any divisor not greater than 12.

1. Divide 924 by $\%$.

Explanation. Write the divisor at the left of the dividend, separating them by a curved line.

Begin with the left-hand or highest order of the dividend, and divide the units of each order separately; thus, 7 is contained in 9 once. Writing 1 at

FIRST OPERATION. Divisor. Dividend. Quotient.
7) $924(132$
$\stackrel{7}{7}$
22 PROOF.
$21 \quad 132$
14 Y
14924 (Prin. IV.) the right of the dividend for the first figure of the quotient, multiply the divisor by this quotient figure and place the product under the part of the dividend used. Subtract, and to the remainder annex 2 , the next lower order of the dividend. In the same manner, we find that 7 is contained in 22,3 times and 1 remainder. Write 3 in the quotient, and to the remainder annex 4 , the next lower order of the dividend. 7 is contained in 14,2 times and no remainder. Hence, the entire quotient is 182 .

The division is said to be exact when there is no remainder. The divisor and quotient then are factors of the dividend.

The solution of the preceding example may be abbreviated thus:

Explanation. 7 is contained in 9, once second operation. and 2 remaiader. Write 1, the quotient figure, under the part of the dividend used. Prefix the remainder to the next lower order of the dividend, 2, making 22. 7 is contained in 22,3 times and 1 remainder. Prefix the remainder to the next lower order, 4 , making 14.7 is contained in 14, 2 times and no remainder. Hence, the entire quotient is 132.

Observe, since 9 of the dividend is hundreds, the 1 of the quotient is hundreds, and since 22 of the dividend is tens, the 3 of the quotient is tens ; and lastly, as 14 of the dividend is units, the 2 of the quotient must be units. Hence,

The quotient figure will always be of the same order as the lowest order of the dividend used to obtain it.

The difference in the two preceding operations is apparent. In the first, the steps of the solution are all written; in the second, the quotient only is written, the other steps being performed mentally. The first is usually termed Long Division, the second, Short Division; the latter is generally used when the divisor does not exceed 12. The principles employed in both cases are the same.

In like manner, by Short Division, find the quotient, and prove the following:

(2.) $6)$ $\frac{8124}{(6 .)}$	(3.) (4.) (\%.)	(5.) (8.)	(5.)

10. Divide 970656 by 4 ; by 6 ; by 8 .
11. Divide $823 \% 18$ by $7 ; 730524$ by $6 ; 995320$ by 8 .
12. Divide 75610 by $5 ; 95326$ by $7 ; 81354 \% 2$ by 6 .
13. Divide 21647 by 9 .

Explanation. Since 9 is not contained in 2, the highest order of units, prefix it to the next lower, making 21, and say, 9 in 21, 2 times and 3 remainder; 9 in 36, 4 times and no remainder ;

OPERATION
$9 \underline{21647}$
$2405 \frac{2}{9}$ 9 in 4, 0 times and 4 remainder; 9 in 47, 5 times and 2 remainder.

This last remainder 2 should be divided by 9 , but we can only $i n$. dicate the division by placing it over the divisor, thus, $\frac{2}{9}$, and write it as a part of the quotient. Hence, the entire quotient is $2405 \frac{2}{9}$, read, two thousand four hundred five and a remainder of two, or ivoo divided oy nine, or twoo niniths.

Proof. $2405 \times 9+2=21647(95, I V)$.
Divide the following numbers by each of the numbers from 2 to 12 inclusive :

14. 4632.	18. 16825.	22. 20731.	26. $18 \% 036$.
15. 3047.	19. 40618.	23.84640.	27.300891.
16. 8659.	20. 81060.	24.68902.	28.716200.
1\%. 2806.	21.73152.	25.9300%.	29.209070.

30. Divide $\$ 136.1 \%$ by $\$.09$.

Explanation. When the divisor and dividend are like numbers, they express units of the same kind, and the quotient is an abstract number

OPERATIGN. 9 cts) 13617 cts. 1513 times. (95, I). Hence, 9 cts. is contained in 1361% cts., 1513 times.

To change dollars to cents, annex two cipkers (41, 4), and omit the sign (\$); and to change dollars and cents to cents, omit the sign (\$) and the point (.), and write the word cents, or cts., at the right.

31. Divide $\$ 136.17$ by 9 .

Explanation. When the divisor is an ab- operation. stract number, the dividend and quotient are like numbers (95, IL). Hence, 1 ninth ($\left(\frac{1}{9}\right)$ of $\$ 136.17$ is $\$ 15.13$.

[^1]Solve and prove the following :

(32.)	(33.)	(34.)	(35.)
\$7) \$8764	\$.08) \$268.00	$6)$ \$3\%.80	$8)$ \$4.00
1252	3350	\$6.	

36. Divide $\$ 34265$ by $\$ 7 ; \$ 98442$ by $\$ 6 ; \$ 765452$ by $\$ 8$.
37. Divide $\$ 5634$. '72 2 by 7 ; $\$ 7766.55$ by 9 ; $\$ 2965.32$ by 12.
38. Divide $\$ 236.80$ by 8 cts.; by 5 cts.; by 4 cts.
39. How many pounds of sugar, at 9 cts a pound, can be bought for $\$ 16.20$? for $\$ 27$? for $\$ 19.35$? for $\$ 175.68$?
40. At 11 cts. a yard, how many yards of muslin can be bought for $\$ 33$? for $\$ 12.8 \%$? for $\$ 73.70$? for $\$ 3.63$?

What is
41. 1 fourth of 37684 tons? $45 . \frac{1}{5}$ of 30205 acres?
42. 1 sixth of 7304 bushels? 46. $\frac{1}{3}$ of 250863 pounds?
43. 1 seventh of 16753 miles?
44. 1 eighth of $\$ 452.96$?
47. $\frac{1}{12}$ of 716052 votes?
48. $\frac{1}{14}$ of 806322 inches?
49. Find one of 9 equal parts of $\$ 473803$; of $\$ 19706.40$.
50. Find one of 7 equal parts of 1036041 ; of 81900632 .

51 . If 12 tons of coal cost $\$ 61.20$, what will be the cost of 5 tons? of 7 tons? of 16 tons? of 25 tons?

101. To divide any number by any divisor greater than 12.

1. Divide 865% by 42 .

Explanation. Since 42 is not contained in 8 , the highest order of units, prefix it to the next lower order, making 86 hundreds for the first partial dividend. 42 is contained in 86 hundreds, 2 hundred times. Multiplying the divisor by this quotient figure, and subtracting the product from the part of the dividend used, there is a remainder of 2 .

OPERATION.
Divisor. Dividend. Quotient.
42) $865 \%\left(206 \frac{5}{42}\right.$
84
25%
252

5 Rem.

To this remainder annex 5, the next lower order of the dividend, making 25 tens, the second partial dividend. 42 is contained in 25 tens, no times. Place a cipher (0) in the quotient, and annex 7, the next lower, making 25% units, the third partial dividend. 42 is contained in 257, 6 times and a remainder of 5 , which write over the divisor and annex to the quotient. Hence, the quotient is 206_{42}^{5}.

Proof. $42 \times 206+5=8657$ (95, IV).

In like manner,

2. Divide 34762 by 18 ; by 26 ; by 38 ; by 46 ; by 54 .
3. Divide 12605 by $\% 5$; by 104 ; by 116 ; by 92 .
4. Divide 73062 by 241 ; 8632% by $162 ; 184321$ by 109.

Rule. I. Write the divisor at the left of the dividend.

1. Take for the first partial clividend the least number of orders on the left that will contain the divisor one or more times. Find how many times the divisor is contained in this partial dividend, and write the result as the first figure of the quotient, either at the right of the clividend, or under the lowest order of the partial dividend used.
2. Multiply the divisor by this quotient figure, and subtract the product from the partial dividend used, and to the remainder annex the next lower order of the dividend for a new partial dividend, and proceed as before; and thus continue until all the orders of the dividend have been divided.
3. If any partial dividend will not contain the divisor, write a cipher in the quotient and annex the next lower order of the dividend, and proceed as before.
4. If the division is not exact, write the last remainder with the divisor underneath, as a part of the quotient.

To test or prove the work, see Prin. 4, 95.
5. Divide 34706 by 28 ; by 33 ; by 48 ; by 54 ; by 66 .
6. Divide 51699 by 116 ; by 203 ; by 314 ; by 109 ; by 94 .
\%. Divide $447 \% \% 05$ by $204 ; 10346 \%$ by $156 ; 340061$ by 231 .

F'ind the result in the following:
8. Of $\$ 1081.92 \div 28$.
9. Of $\$ 183.12 \div 44$.
10. Of $\$ 663.60 \div 105$.
11. Of $\$ 1531.60 \div 56$ cts.
12. Of $\$ 346.92 \div \$.42$.
13. Of $\$ 15625 \div \$ 125$.
14. Of $\$ 54978.00 \div \$ 1.75$.
15. Of 721445 feet $\div 72$ feet.
16. Of 184752 men $\div 144$.

1\%. Of $236 \times 20 \div 29$.
18. Of $(4 \% 20+5 \% \% 8) \div 38$.
19. Of $3670054 \div \overline{6 \times 63}$.
20. Of ($809671-76850) \div 126$.
21. Of $\overline{26314 \times 7} \div \overline{4763-4500}$.
22. Of $(\$ 25000 \times 23) \div \overline{\$ 46 \times 9}-200$.
23. Of $(3761 \times 24-4000) \div \overline{640-506}$.
24. Of (7000 acres -2500 acres) $\times 18 \div \overline{21 \times 8}$.
25. Of (9052 pounds $\times 105-40$ pounds) $\div \overline{100 \times 126}$.
26. Paid $\$ 1 \% 125$ for 137 acres of land. What was paid an acre?
2%. If an army consume 312805 pounds of beef in 365 days, what is the average amount for 1 day?
28. How many cows, at $\$ 43$ a head, will $\$ 19608$ buy?
29. How many bales, each weighing 475 pounds, can be made of 93450 pounds of cotton?
30. How many United States bonds, at $\$ 109$ each, can be bought for $\$ 163500$? for $\$ 10 \% 256$? for $\$ 214512$?
31. How many loads of bricks, each load containing 1248 bricks, are there in a pile of 91856 bricks?
32. The property of a town, containing $46 \% 4$ inhabitants, is valued at $\$ 58 \% 0544$; what is the average to each person ?
33. A merchant bought 375 barrels of flour, at $\$ 7.50$ a barrel, and sold it for $\$ 3600$. What was his whole gain, and his gain on each barrel?
34. Divide 165381% by 412 ; by 508 ; by 784.
35. Divide 3065284 by 1326 ; by 2465 ; by 3108 .
36. Divide 87630046 by 4036 ; by 5174 ; by 16325 .

3\%. Divide 206180439 by 53021 ; by 1630 ± 2.
102. Drill Table No. 2, page 52, will furnish all the additional examples for the slate and blackboard required.

Commencing with the second line, opposite $\boldsymbol{2}$, copy dividends with three, four, five, or more figures, as may be desired, from the columns A B CDE, etc., in the same manner and order as multiplicands were copied in multiplication, and for divisors use the figure or figures directly above the righthand figure or figures of the dividend. Thus,

When the dividend contains four figures and the divisor one, copy from the columns A B C D:
(1.) $6) 1348$
(2.)
(3.)
(4.)
$5 \lcm{9367}$
(5.)

In like manner, copy dividends from columns BCDE, CDEF, DEFG, etc.

When the dividend contains five figures and the divisor two, copy from the columns A B CDE:
(6.)
65) 13482 (
(\%)
(8.)
(9.)

In like manner, copy from columns B C D E F, C D E F G, D E F G H, etc.

When the dividend contains five figures and the divisor three, copy as before ; thus, from columns B C D E F :
(10.) (11.) (12.)
(13.)
65%) $34825(825) 68443(443) 825 \% 9(579) 36735($
In like manner, copy from columns CD E F G, DEF GH, etc.

In the same manner, copy dividends containing more than five figures, and divisors containing three, four, or more figures.
103. To divide when the divisor can be separated into factors.

The process of dividing any number by a factor of the divisor, and the resulting quotient by another, and so on, is called Continued Division.

1. Divide 25380 by 108 .

$$
108=9 \times 4 \times 3, \quad \text { or } \quad 6 \times 6 \times 3, \quad \text { or } \quad 9 \times 6 \times 2 .
$$

108) 25380 (235	$9) \underline{25380}$	6) 253880	9) 25380
216	$4 \lcm{2820}$	$6 \underline{4230}$	$6 \longdiv { 2 8 2 0 }$
378 324	3) 705	3) 705	2) 470
540	235	235	23.5

540
It is obvious that the quotient will be the same, whether the dividend be divided by the divisor, or by any set of factors of which the divisor may be composed (95, III).
2. Divide 5664 by 96 , or by the factors 3,4 , and 8 .
3. Divide 60165 by 105 , or by the factors 7,5 , and 3 .
4. Divide 170604 by 126 , or by the factors 9,7 , and 2 .
5. Divide 893 by 30 , using the factors 2,3 , and 5 .

Explanation. Dividing by 2, we obtain 446 twos and 1 remainder ; dividing 446 twos by 3 , we have 148 sixes and 2 twos, or 4, remainder; again, dividing 148 sixes by 5 , we have 29 thirties and 3 sixes, or 18 , remainder ; hence, $18+4+1$, or 23 , is the true remainder.

OPERATION.

2) | 893 |
| :--- |
| $3 \lcm{446}$ |
| $5 \underline{148}, \quad 2$ twos $=$ |
| 29,3 sixes $=\frac{18}{23}$ |

True remainder,

Rule. Find the product of each remainder by all the divisors preceding the one that produced it, and the sum of the products, with the first remainder, if any, will be the true remainder.

Find the true remainder in the following:
6. $\quad 178584 \div 72$, or by 9 and 8 .
\%. $\quad 4619 \div 125$, or by 5,5 , and 5 .
8. $\quad 63825 \div 135$, or by 3,5 , and 9 .
9. \quad Y $35479 \div 168$, or by 7,6 , and 4 .
104. When the alivisor has ciphers at the right.

1. Divide 37621 by 100 .

Explanation: Removing any order of units one place to the right, by cutting off or taking the right-hand figure of a number, divides it by 10 ($\mathbf{1 5}$, IV). For similar reasons, cutting off two figures divides it by 100 ; three figures divides by 1000 , etc. The re maining figures are the quotient, and those cut off are the remainder.
2. Divide 76340 by 500 .

Explanation. The divisor is composed of the factors 5 and 100. First divide by 100 , by cutting off the two right-hand figures of the dividend, the quotient is 763. Dividing this quotient by 5 gives a quotient of 152 , and a remainder oi 3 hundreds, which prefixed to the first remainder 40 gives the true remainder, 340 .
3. Divide 134750 by 10 ; by 100 ; by 1000 ; by 10000 .
4. Divide 42067200 by $600 ;$ by 1200 ; by 9000 ; by 24000 .
5. Divide $31403 \% 00$ by 9100 ; by 12500 ; by 3710 ; by 26000 .

Rule. I. Cut off the ciphers from the right of the divisor, and as many figures from the right of the dividend, and divide the remaining part of the dividend, by the remaining part of the divisor, for the quotient.
II. Annex the figures cut off, to the remainder, if any, and the result will be the true remainder.
6. At a cost of $\$ 1200$ each, how many cottages can ba built for $\$ 76800$? For $\$ 138000$?
7. How many lots, at $\$ 700$ each, can be bought for $\$ 58100$?
8. If $\$ 745600$ be distributed equally among 960 soldiers, what will each man receive?

Find the value of the following expressions:
9. $75460 \div 3600$.
10. $137214 \div 1320$.
11. $\$ 846000 \div \$ 2500$.
12. 203040 cts. $\div 600$ cts.
13. $4307561 \div 31 \%$.

$$
\begin{aligned}
& \text { 14. } \$ 130760 \div 1280 . \\
& \text { 15. }(840+524 \times 5) \div 200 . \\
& \text { 16. }(12680-3265 \times 10) \div 320 . \\
& \text { 1\%. }(864000 \div 400+3740) \times 9 . \\
& \text { 18. } \quad(63070 \times 10) \div(28 \times 500) .
\end{aligned}
$$

General Principles of Division.

105. The value of the quotient depends upon the rebative values of the dividend and divisor.

There are six cases of changing the terms by multiplication and division, and which may be illustrated by comparing the equation $\frac{64}{8}=8$ with the following, thus:

$$
\begin{aligned}
& \text { I. } \frac{64 \times 4}{8} \text { or } \frac{64}{8 \div 4}=32 .\left\{\begin{array}{l}
\begin{array}{c}
\text { Multiplying the dividend, or } \\
\text { dividing the divisor, MuLTrPLIEs } \\
\text { the quotient by the same number. }
\end{array}
\end{array}\right. \\
& \text { II. } \frac{64 \div 4}{8} \text { or } \frac{64}{8 \times 4}=\text { 2. }\left\{\begin{array}{l}
\text { Dividing the dividend, or mul- } \\
\text { tiplying the divisor, DIvIDEs } \text { the } \\
\text { quotient by the same number. }
\end{array}\right. \\
& \text { III. } \frac{64 \times 4}{8 \times 4} \text { or } \frac{64 \div 4}{8 \div 4}=8 \text {. }\left\{\begin{array}{l}
\begin{array}{l}
\text { Multiplying or dividing both } \\
\text { the dividend and divisor by the } \\
\text { same number, DOES NOT CHANGE } \\
\text { the quotient. }
\end{array}
\end{array}\right.
\end{aligned}
$$

Hence, the following Genercl Principle may be deduced :
106. A change in the DIvidend by multiplication or division produces a LIKe change in the quotient; but such a change in the divisor produces an opposite change in the quotient.

Mental Exercises.

10\%. 1. If $\$ 120$ are equally distributed among 6 poor families, and each family consists of 4 persons, what will each receive?
analysis. Each family will receive $\frac{1}{6}$ of $\$ 120$, or $\$ 20$; and each person will receive $\frac{1}{4}$ of $\$ 20$, or $\$ 5$.
2. What is $\frac{1}{3}$ of $\frac{1}{8}$ of 96 ? $\frac{1}{2}$ of $\frac{1}{8}$ of 100 ? $\frac{1}{4}$ of $\frac{1}{8}$ of 64 ? $\frac{1}{6}$ of $\frac{1}{8}$ of 90 ? $\frac{1}{2}$ of $\frac{1}{10}$ of 200 feet?
3. If $\frac{1}{12}$ of 144 pineapples are bad, how many are good?
4. How many days' work, at $\$ 4$ a day, will pay for 5 weeks' board, at $\$ 7$ a week, and $\$ 13$ borrowed money ?
5. Paid $\$ 1.05$ for 5 boxes of soap, each box containing 3 cakes; what was the price of each cake? Of 6 cakes?
6. If 8 yards of cloth are worth $\$ 40$, how many yards must be given for 15 cords of wood, at $\$ 3$ a cord ?
\%. A grocer bought two kinds of sugar, one for 9 cts. and the other for 11 cts. a pound. What was the average price per pound?

The average of two nımbers is one half their sum; of three numbers, one third their sum, etc.
8. Find the average of 3,5 , and 7 ; of 5,8 , and 14 ; of $4,6,7$, and 11 ; of $3,5,7,9$, and 6 .
9. What is the average price per pound of three kinds of coffee, at 20 cts., 25 cts., and 30 cts. a pound, respectively?
10. A grocer bought 4 barrels of apples of different qualities, at $\$ 2.50, \$ 3$, $\$ 4$, and $\$ 4.50$, and sold them for $\$ 20$. How much above the average price did he receive a barrel?

Find the second member of the following equations:

108. Cancellation is a short method of obtaining results by rejecting or cancelling equal factors both from the dividend and the divisor.
109. Tr e Sign of Cancellation is an oblique mark (/), drawn through the number from which the factor is cancelled.
110. Prinoiples. I. Rejecting a factor from a number. divides the number by that factor.

Thus, $36=9 \times 4$. Rejecting 4 from 36 , we have 9 , the quotient of 36 divided by 4.
II. Rejecting equal fuctors from both the dividend and the divisor does not change the quotient.

Thus, $72 \div-24, \frac{72}{2}=3$. Or, $\frac{72}{24}=\frac{12 \times 6}{4 \times 6}=\frac{12}{4}=3$. Because, dividing both the dividend and the divisor by 6 , or rejecting from both the factor 6 , does not change the quotient ($\mathbf{1 0 5}$, III).

Written Exercises.

111. 112. Divide 48 by 24.

> operation.

$$
48 \div 24, \quad \text { or } \quad \frac{48}{24}=\frac{2 \times \$ \times 8}{2 \times \$ \times 4}=\frac{8}{4}=2
$$

Explanation. By inspection, we find that the dividend contains the factors 2,3 , and 8 , and that the divisor contains the factors 2,83 , and 4. Rejecting the factors that are common both to the dividend and divisor, which is the same as dividing by those factors (110, II), there remain the factor 8 in the dividend and the factor 4 in the divisor. Hence, the quotient is $\stackrel{\xi}{\psi}=2$.

2. Divide 150 by 25 .

Explanation. Separate the dividend into the facto:s 5,5 , and 6 , and the divisor into the factors 5 and 5 . Re-

OPERATION.

$$
\frac{150}{25}=\frac{5 \times \$ \times 6}{5 \times \$}=\frac{6}{1}=6
$$ jecting equal factors from both, there remains the factor 6 in the div.. dend. Hence, the quotient is 6 .

Explanation. Since 7 is a factor common to 7 of the divisor and 28 of the dividend, reject it from both, retaining the factor 4 in the dividend. For a like reason, reject the factor 15 from the divisor and from 75 in the dividend, retaining the factor 5 . Then cancel the common factor 7 from 84 in the divisor and from 49 in the dividend, retaining the factors 12 and 7 respectively. Next cancel the common factor 4 from 12 in the, divisor and from 4 in the dividend, and there remains the uncancelled factors 7 and 5 in the dividend and 3 in the divisor. Hence, the quotient is $7 \times 5 \div 3=11 \frac{2}{3}$.

It is thought by many to be more convenient to write the dividend, or its factors on the right of a vertical line, and the divisor, or its factors on the left, and then, after cancelling equal factors, perform the multiplication and division.
4. Divide $5 \times 9 \times 7 \times 11$ by $7 \times 5 \times 3 \times 11$.
5. Divide $80 \times 56 \times 18$ by $28 \times 20 \times 9$.
6. Divide $3 \times 6 \times 8 \times 12$ by $2 \times 3 \times 4 \times 6$.
\%. Divide $70 \times 39 \times 13$ by $26 \times 21 \times 7$.
Rule. Cancel the factors common to the divisor and divi. lend; divide the product of the remaining factors of the dividend by the product of the remaining factors of the divisor.

After the cancellation, if the unit 1 alone remains in the dividend, it must be retained ; if in the divisor, it may be omitted,
8. Find the quotient of $\frac{183 \times 70 \times 9 \times 24 \times 5}{126 \times 60 \times 30}$.
9. $(100 \times 64 \times 18 \times 7) \div(49 \times 25 \times 16)=$?
10. Multiply 18 times 66 by 27 times 25 , and divide the product by ${ }^{7}$ times 84 multiplied by 30 times 45 .
11. Gave 20 pounds of butter, at 27 cents a pound, for 15 pounds of coffee. What was the coffee worth a pound?

Explanation. 20 pounds of butter will cost 27 cents $\times 20$; and 1 pound of coffee will be worth one fifteenth of 27 cents $\times 20$, or $\frac{27 \times 20}{15}=36 \mathrm{cts}$.
operation.

12. Gave 36 bushels of wheat for 9 barrels of flour, at $\$ 10$ a barrel. What was the wheat worth a bushel ?
13. If 5 yards of cloth cost $\$ 8.20$, what will 18 yards cost?

Explanation. One yard will cost one fifth of $\$ 8.20$, or $\$ 8.20 \div 5$; and 18 yards will cost 18 times $\$ 8.20 \div 5$, or $\frac{\$ 8.20 \times 18}{5}=\$ 29.52$.

OPERATION.

$-|$| $\$ 8.20^{1.64}$ |
| :--- | :--- |
| $\frac{18}{\$ 29.52}$ |

14. If 20 tons of coal cost $\$ 147$, what will 12 tons cost?
15. What will 2^{17} pounds of tea cost, if 9 pounds cost $\$ 4.50$?
16. How many bushels of corn, at $\$.60$ a bushel, will pay for 12 tons of coal, at $\$ 7.20 \mathrm{a}$ ton?

Explanation. 12 tons of coal will cost $\$ 7.20 \times 12$; and it will take as many bushels of corn, at $\$.60$ a bushel, to pay for it, as $\$.60$ is contained times in $\$ 7.20 \times 12$, or $\frac{\$ 7.20 \times 12}{\$.60}=144$.
17. How many bushels of potatoes, worth 40 cts. a bushel, must a farmer give for 25 pounds of coffee, worth 30 cts a pound?
18. How many chickens, at $\$.70$ each, must be given for 2 barrels of flour, at $\$ 8.40$ a barrel ?
19. Sold 8 tubs of butter, each containing 54 pounds, at 28 cts. a pound; and received in payment 6 barrels of sugar, each containing 216 pounds. What was the sugar worth a pound?

Explanation. The value of the butter operition. is equal to $28 \mathrm{cts} \times 54 \times 8$; the number of pounds of sugar is 216×6, and the price of 1 pound of sugar is equal to

$$
\frac{28 \mathrm{cts.} \times 54 \times 8}{216 \times 6}=9 \frac{1}{3} \mathrm{cts} .
$$

OPERATION.	
${ }^{3} 2 x \$$	28 cts.
	\$4
6	\$
3	28
	$9 \frac{1}{3} \mathrm{cts}$.

20. A farmer exchanged 29 bushels of barley, worth $\$.75$ a bushel, with his neighbor, for corn, worth $\$.87$ a bushel. How many bushels of corn did he receive?
21. A grocer sold 16 boxes of soap, each containing 66 pounds, at 9 cts . a pound, and received in payment 88 barrels of potatoes, each containing 3 bnshels. What were the potatoes worth a bushel?
22. If 35 yards of cloth cost $\$ 140$, what will 28 yards cost?
23. Bought 180 yards of cotton cloth, at 12 cts . a yard. How many bushels of oats, at $\$.45$, will pay for the cloth?
24. How much tea, at $\$.96$ a pound, will pay for 6 tubs of butter, each containing 36 pounds, worth 27 cts a pound?
25. If 24 pounds of rice are worth 18 pounds of sugar, how many pounds of rice will pay for 217 pounds of sugar?
26. Sold 15 barrels of apples, each containing 3 bushels, at $\$.84$ a bushel. How many pieces of cotton cloth, each containing 45 yards, at 12 cents a yard, will pay for the apples?
27. A farmer sold 14 bushels of potatoes, at $\$.56$ a bushel, and took his pay in sugar, at 8 cents a pound ; how many pounds did he receive?

2DE FINITVIONSC

112. Quantity, in business transactions, is the amount of anything considered, or of any commodity bought, or sold.
113. Price is the value in money of one, or of a given unit of any commodity.
114. Cost is the value in money of the entire quantity bought, or sold.
115. An Aliquot Part of a number is an exact divisor of that number; or, it is one of the equal parts of the number.

Thus, $7 \frac{1}{2}, 5,3$, and $2 \frac{1}{2}$ are aliquot parts of 15 , since $7 \frac{1}{2}$ is one of two. equal parts of 15,5 is one of three equal parts, 3 is one of five equal parts, etc.

Practical Applications.

116. The price and quantity given, to find the cost.
117. Find the cost of 63 pounds of coffee, at 26 cts. a pound ?

Explanation. 63 pounds will cost 63 times the price of 1 pound, or $\$.26 \times 63$ $=\$ 16.38$. Hence,

$$
\text { Price } \times \text { Quantity }=\text { Cost } . \quad \text { Cost, } \quad \$ 16.38
$$

2. At 12 cts. a pound, what is the cost of 96 pounds of sugar?
3. At $\$.75$ each, what is the cost of 48 books? Of 125 ?
4. What cost 67 yards of cloth, at $\$ 2.36$ a yard? At $\$ 4.12$?
5. What is the cost of 146 barrels of flour, at $\$ 7.56$ a barrel?
6. What is the cost of 108 days' work, at $\$.98$ a day?
7. Find the cost of 248 bushels of wheat, at $\$ 12$ for 8 bushels; at $\$ 7.80$ for 5 bushels; at $\$ 11.48$ for 7 bushels.

11\%. The quantity and cost given, to find the price.

1. If 75 baskets of peaches cost $\$ 112.50$, what is the price?

Explanation. Since 75 baskets cost $\$ 112.50$, the price of 1 basket is one seventyfifth of $\$ 112.50$, or $\$ 1.50$. Hence,

Cost \div Quantity $=$ Price.

operation. Quantity. Cost. \%) $\$ 112.50$
Price, \$1.50

2. If 45 pounds of tea cost $\$ 33 . \% 5$, what is the price per pound?
3. If $\$ 448$ is paid for 28 tons of hay, what is the price per ton? If $\$ 228$ is paid for 16 tons? $\$ 440$ for 25 tons?
4. What is the price per pound, when 160 pounds of mutton cost $\$ 14.40$? When 8^{17} pounds cost $\$ 10.44$?
5. If 33 tons of coal cost $\$ 206.25$, what is the price per ton? What is the cost of 14 tons? Of 3% tons?
6. If a man earns $\$ 11.22$ in 6 days, what does he earn in 9 days? In 16 days? In 29 days? In 54 days?
7. The cost and price given, to find the quantity.
8. How many pounds of butter, at 25 cts. a pound, can be bought for $\$ 42$?

Explanation. At 25 cents a pound, $\$ 42$ will pay for as many pounds of butter as 25 cents is contained times in $\$ 42$, which is 168 times. Hence,

Cost \div Price $=$ Quantity.
$\$ 42=4200$ cts. $(\mathbf{4 1}, 4)$.
Price. Cost. 25 cts.) 4200 cts . Quantity, 168 pounds.
2. How many pounds of sugar can be bought for $\$ 72$, at 8 cts. a pound? At 10 cts.? At 11 cts.? At 12 cts.?
3. At $\$.30$ a box, how many boxes of grapes can be bought for $\$ 5.40$? For $\$ 12$? For $\$ 1 \% 10$? For $\$ 3.60$?
4. At $\$ 136$ each, how many horses can be bought for $\$ 2040$? For $\$ 2720$? For $\$ 5032$?
119. Aliquot Parts of One Dollar.

50 cents $=\frac{1}{2}$ of $\$ 1 . \quad 12 \frac{1}{2}$ cents $=\frac{1}{8}$ of $\$ 1$.
$33 \frac{1}{3}$ cents $=\frac{1}{3}$ of $\$ 1$.
25 cents $=\frac{1}{4}$ of $\$ 1$.
20 cents $=\frac{1}{5}$ of $\$ 1$.
$16 \frac{2}{3}$ cents $=\frac{1}{6}$ of $\$ 1$.

10 cents $=\frac{1}{10}$ of $\$ 1$.
$8 \frac{1}{3}$ cents $=\frac{1}{12}$ of $\$ 1$.
$6 \frac{1}{4}$ cents $=\frac{1}{16}$ of $\$ 1$.
5 cents $=\frac{1}{20}$ of $\$ 1$.
120. To find the cost of any number of things, or of a quantity, when the price is an aliquot part of $\$ 1$.

1. What cost 96 yards of cambric, at 25 cts . a yard?

Explanation. If the price was $\$ 1$ a yard, the cost would be $\$ 96$: but since the price is $\$ \frac{1}{4}$, the

OPERATION.
$\$.25 \times 96=\$ 24 . \quad$ Or,
$\frac{1}{4}$ of $\$ 1 \times 96$, or $\$ 96 \div 4=\$ 24$. cost is $\frac{1}{4}$ of $\$ 96$, or $\$ 24$. Hence,

Take such a part of the given number, or quantity, as the price is of $\$ 1$; the result will represent the cost.

What is the cost of
2. 108 yards of calico, at $8 \frac{1}{3}$ cts. a yard? At 10 cts.?
3. 120 pounds of sugar, at $12 \frac{1}{2}$ cts. a pound? At $8 \frac{1}{3}$ cts.?
4. 75 pounds of coffee, at $33 \frac{1}{3}$ cts. a pound? At 25 cts.?
5. 18 dozen of eggs, at 20 cents a dozen? At $16 \frac{2}{3}$ cts.?
6. 3% baskets of peaches, at $\$.50$ a basket?
\%. How many bushels of oats, at $\$.45$ a bushel, will pay for 4 pieces of sheeting, each piece containing 36 yards, at $16 \frac{2}{3}$ cts. a yard, and 2 sacks of coffee, each containing 35 pounds, at 20 cts . a pound?
8. What is the cost of 84 yards of carpet, at $\$ 1.33 \frac{1}{3}$ a yard?

> OPERATION.
$\$ 1 \frac{1}{3} \times 84=\$ 84+\frac{1}{3}$ of $\$ 84, \quad$ or $\$ 112$.
Explanation. Since the price is $\$ 1 \frac{1}{3}$, the cost of 84 yards is $\$ 84$ clus $\frac{1}{3}$ of $\$ 84$, or $\$ 84+\$ 28=\$ 112$.
9. What is tho cost of 144 bushels of wheat, at $\$ 1.16 \frac{2}{3}$ a bushel ? At $\$ 1.25$? At $\$ 1.33 \frac{1}{3}$? At $\$ 1.50$? At $\$ 2.25$?
10. What cost 120 hats, at $\$ 2.20$ each ? At $\$ 3.12 \frac{1}{2}$?
121. To find the quantity, when the cost is given, and the price is an aliquot part of $\$ 1$.

1. How many slates, at 25 cts. each, can be bought for $\$ 42$?

Explanation. Since the price is $\$ \frac{1}{2}, \$ 1$ will buy 4 slates, and $\$ 42$ will buy 42 times 4 slates, or 168 slates. Hence,
opeeation.

$$
\begin{aligned}
& \$ 1.00 \div \$.25=4 \\
& 4 \times 42=168
\end{aligned}
$$

Multiply the number of dollars in the cost by the number of times the price is contained in one dollar.
2. At $33 \frac{1}{3}$ cents a box, how many boxes of grapes can be bought for $\$ 1.33 \frac{1}{3}$? For $\$ 12$? For $\$ 7.66 \frac{2}{3}$?
3. How many pounds of sugar can be bought for $\$ 36$, at $6 \frac{1}{4}$ cts. a pound? At $8 \frac{1}{3}$ cts.? At 10 cts. ? At $12 \frac{1}{2}$ cts.?
4. How many melons can be bought for $\$ 63$, at $\$.25$ each? At 20 cts. ? At $16 \frac{2}{3}$ cts. ? At $12 \frac{1}{2}$ cts. ?
5. How many baskets of pears can be bought for $\$ 1.50$, at 25 cts. a basket? At $\$.50$? At $\$.75$?

REVIEW.

Written Exercises.

122. 123. Find the quotient, by short division, of 76538959 divided by 28 ; by 64 ; by 96 ; by 108 ; by 132 .
1. If the divisor is 385%, the quotient 489 , and the remainder 1305, what is the dividend?
2. How many times in succession can 3589 be subtracted from 241462 , and what will be the final remainder?
3. What must be subtracted from 57385 , so that it can be exactly divided by 38% ? or what number added?
4. What number divided by 36 will give a quotient of 32% and a remainder of 26 ?
5. How many times in succession must 1739 be added to $8348^{\text {\% }}$ to make the final sum 200000 ?
\%. If 4,7 , and 9 are three factors of 3276 , find the fourth
6. The quotient is 404 , the divisor 365 , and the remainder 215 ; what is 1 fifth of the dividend?
7. How many pounds of sugar, at 14 cts a pound, can be bought for 84 bushels of apples, worth 36 cts. a bushel?
8. What number multiplied by 216 will produce 1554768 ?
9. The sum of two numbers is 4560 , and the less 1970 ; what is the product of the two numbers?
10. How many tubs of butter, each containing 58 pounds, at 28 cts. a pound, will pay for 12 barrels of flour, at $\$ 8.12$ a barrel?
11. What number added to 800924 makes 3000001 ?
12. The divisor is 48 , the quotient ' 76920 ; if the divisor is 1 fourth as great, what is the quotient? If the divisor is increased 4 times?
13. A builder bought four city lots for $\$ 1260, \$ 2083$, $\$ 2500$, and $\$ 2637$; what was the average cost per lot?
14. Bought a farm for $\$ 5000$. Paid at one time $\$ 1236$, at another, $\$ 908.75$, and at another, enough to reduce the debt to $\$ 10 \% 5.50$; what was the third payment?

1\%. How many bushels of potatoes, at $\$.75$ a bushel, will pay for 5 pieces of sheeting, each piece containing 36 yards, at 15 cents a yard; and 3 sacks of coffee, each containing 30 pounds, at 25 cts. a pound?
18. There are 36 men employed on a job, each receiving the same wages ; at the end of 21 days, they receive $\$ 1 \% 01$. What are their daily wages?
19. If it require 250 bushels of wheat to make 50 barrels of flour, how many bushels will be required to make 19 barrels?
20. If 26 acres of land cost $\$ 2236$, what will 127 acres cost, at the same rate? 236 acres ? $\frac{1}{8}$ of 640 acres?
21. In what time will a boy, at $\$. \% 5$ a day, earn as much as a man earns in 70 days, at $\$ 2.25$ a day?
22. A farmer sold 150 bushels of wheat, at $\$ 1.60$ a bushels 125 barrels of apples, at $\$ 2$ a barrel, and 250 bushels of potatoes, at $\$.48$ a bushel, and with the money bought sheep, at $\$ 5$ a head; how many sheep did he buy?
23. The cost of a piece of cloth was $\$ 112 . \% 0$, and the price $\$ 2.45$ a yard; how many yards in the piece?
24. A coal dealer bought 1428 tons of coal for $\$ 5 \% 12$, and sold 975 tons of it, at $\$ 5.60$ a ton, and the remainder, at cost ; what did he gain?
25. If 24 pounds of cheese cost $\$ 2.88$, what is the price per pound?
26. A farm containing 15% acres sold for $\$ 44 \% 4.50$; what was the price per acre?
2%. The sum of two numbers is $3 \% 2$, and their difference is 64 ; what are the numbers?

Explanation. Since 372 equals the sum of the numbers, and since the greater diminished by the difference equals the less, if the difference be subtracted from the sum, the remainder will be twice the less number. Hence, $\overline{372}-64 \div 2=154$, the less number; and $154+64=218$, the greater number.

Or, if the difference be added to the sum, the amount will be twice the greater number. Hence, $\overline{372+64} \div 2=218$; and $218-64=154$.

Proof. $218+154=372$, the sum.
28. There are two numbers whose difference is 45 , and whose sum is 455 ; find their product.
29. A house and lot are valued at $\$ 12500$; the house is valued at \$2640 more than the lot; what is the value of each ?
30. A merchant made $\$ 7387$ profits in two years. He gained the second year $\$ 1053$ more than in the first ; what was his gain each year?
31. In an election, the whole number of votes cast for two candidates was 3789 , and the majority for the successful candidate was 22%. How many votes did each recerve?
32. A man having $\$ 6850$, paid out all but $\$ 15 \%$ in '\% weeks; what was the average amount paid out each week?
33. A man took 3 loads of potatoes to market, each load containing 20 bags, and each bag 2 bushels. He sold them at $\$.50$ a bushel, and received in payment 4 chests of tea, each containing 25 pounds; what was the tea worth a pound?
34. A number of cattle, that cost $\$ 4896$, sold for $\$ 6048$, by which a profit of $\$ 12$ a head was made. How many head of cattle were there, and what was the price per head?

Find the second members of the following equations:

$$
\begin{aligned}
& \text { 35. } \$ 475 \times \overline{120-74} \div 437+\$ 87 \times 42=? \\
& \text { 36. }(37 \% 5 \div 151+14 \times 376-3000) \div 109=? \\
& 3 \% .(67893-8637) \div 823+754 \times(235-94)-98 \%=? \\
& \text { 38. }\left(8085 \div 35+\frac{817}{19}-\frac{328 \times 5}{40}\right) \times 64=\text { ? } \\
& \text { 39. } \$ 1728 \times 8 \div \frac{\$ 180 \times 24}{\$ 108 \times 10}-(\$ 164 \times \overline{96-81})=? \\
& \text { 40. } \$ 7608+\frac{(\$ 560-\$ 374) \times 10}{1080 \div 36}=\$ 10000-?
\end{aligned}
$$

123. All operations in Arithmetic are classed under one or more of the problems belonging to the four fundamental rules.

Let the pupil be required to illustrate each of the following problems by several original examples.

I. ADDITION.

Given: 1. The parts, to find their sum or amount.
2. The less of two numbers and their difference, to find the greater.

II. SUBTRACTION.

Given: 1. The sum of two numbers, and one of them, to find the other number.
2. Two numbers, to find their difference.

III. MULTIPLICATION.

Given: 1. Two numbers, to find their product.
2. Any number of factors, to find their continued product.
3. The divisor and quotient, to find the dividend.

IV. DIVISION.

Given: 1. The dividend and divisor, to find the quotient.
2. The dividend and quotient, to find the divisor.
3. The product and one of two factors, to find the other.
4. The continued product of several factors, and the product of all but one factor, to find that one.

V. MISCELLANEOUS.

Given: 1. Several different quantities, or prices, to find the average quantity or price.
2. The sum and difference of two numbers, to find the numbers.
3. The price and quantity, to find the cost.
4. The cost and quantity, to find the price.
5. The cost and price, to find the quantity.
6. The quantity and the price, when the price is an aliquot part of $\$ 1$, to find the cost.
7. The cost and the price, when the price is an aliquot part of $\$ 1$, to find the quantity.

2DEFINTTONSE

124. An Integer is a number that represents whow things.

Thus, $6,8,12$ men, 46 days are integers.
Every number is an integer, a fraction, or a mixed number.
125. Every integer is

1. Even, or Odd.
2. Abstract, or Denominate $(\mathbf{4}, \mathbf{5})$.
3. Prime, or Composite. 4. Simple, or Compound (280).
4. A Factor of a number is one of the integers whose continued product is that number.

Thus, 6 and 9 are factors of $54 ; 2,4$, and 6 , of 48 .
12\%. An Exact Divisor of a number is an integer that will divide that number without a remainder.

Thus, 8 is an exact divisor of 53 ; and 12 , of 60 .

1. A factor is also an exact divisor of a number; and conversely, an exact divisor of a number is always a factor of the same number.
2. Every exact divisor or factor of a number is also called a measure of that number.
3. When a number is a factor or divisor of tioo or more numbers, it is called a common factor, or common measure of those numbers.
4. The use of the terms number, factor, and divisor, is here restricted to integral numbers.
5. A Prime Number is a number exactly divisible only by itself and by unity.

Thus, $2,3,5,7,11$, etc., are prime numbers.
129. A Prime Factor is any prime number used as a factor.

Thus, 2,3 , and 5 are prime factors of 30 .
130. Two numbers are prime to each other when they have no factor or divisor, except 1, common to both.

Thus, 8 and 15 are prime to each other.
131. A Composite Number is a number that has other factors or divisors than itself and 1.

Thus, 24 is a composite number, since it is the product of, and can be divided by 4 and 6 , or by 3 and 8 , or by 2,3 , and 4 .
132. The Greatest Common Divisor (G. c. d.) of two or more numbers is the greatest number that divides each of them exactly, and is the product of all the common prime factors.

Thus, 9 is the G. c. D. of 27 and 36 , since it is the product of 3 and 3 , the only prime factors common to 27 and 36 .
133. A Multiple of a number is any dividend exactly divisible by that number; or, it is any product obtained by using the given number as a factor.
Thus, 8, 12, and 16 are multiples of 4.
134. The Least Common Multiple (L. c. m.) of two or more numbers is the least number that is exactly divisible by each of them.

Thus, 15 is the L. c. m. of 3 an 5 , since it is the least number that is exactly divisible by 3 and 5 .

There can be but one L. C. M. of two or more numbers.
135. One number is a measure, or a sub-multiple, or an aliquot part of another number, when it exactly divides it.

Thus, 6 is a measure, or a sub-multiple, or an aliquot part of 24.
136. An Even Number is a number exactly divisible by 2 .

All ecein numbers end with $0,2,4,6$, or 8 .

13\%. An Odd Number is a number not exactly divisible by 2 .

All odd numbers end with $1,3,5,7$, or 9 .
138. Any number is exactly divisible

1. By 2 , if it ends with a cipher or a digit divisible by 2.
2. By 3 , if the sum of its digits is divisible by 3 .
3. By 4 , if the number expressed by the two figures on the right is exactly divisible by 4.
4. By 5 , if it ends with a cipher or 5.

5 . By 6 , if it is exactly divisible by 2 and 3 .
6. By 8 , if the three figures on the right are ciphers, or if the number expressed by them is exactly divisible by 8 .
7. By 9 , if the sum of its digits is exactly divisible by 9 .
8. By 10 , if it ends with a cipher.
9. By 12 , if it is exactly divisible by 3 and 4 .

Mental Exercises

139. 140. Name the factors of $25 ; 32 ; 45 ; 60$.
1. Name the prime numbers from 1 to 30 .
2. Name the composite numbers from 2 to 40 .
3. Of what integers is 60 the continued product?
4. Of what prime numbers is 9 the product? 15? 21?
5. Name four numbers of which 7 is a common factor.
\%. Name the smallest exact divisor of 30 and 42.
6. Name the prime factors of $35 ; 36 ; 50 ; 54$.
7. What are the prime divisors of 25 ? 30 ? 55 ? 63 ?
8. Name two numbers that will exactly divide or meas are 28 acres; 32 hours; 45 rods; 60 pounds.
9. Name two common divisors or measures of 36,48 , and 60 ; the greatest common measure; the least.
10. Name three measures of 24 yards ; of 36 miles.
11. What factors are common to 12,24 , and 36 ? To 9. 2%, and 45 ?
12. What prime divisor is common to 14 and 3 times 14 ?
13. What is the least number exactly dirisible by 3,2 , and 7?
14. Name three odd numbers of which 0 is a common factor or divisor ; three even numbers.
15. What is the greatest number that will exactly divide or measure 36 and 45 ? 45 and 60 ? 24,36 , and 48 ?
16. What two numbers will exactly measure 20 and 60 ? Their sum? Their difference? Their product?
17. What is the G. c. D. of 32,40 , and 64 ?
18. Name four numbers of which 7 is the G. C. D.
19. Name the L. c. m. of 9 pints and 6 pints.
20. What number is the L. c. м. of $\$ 5, \$ 6$, and $\$ 10$?
21. Principles. 1st. Of Factors and Divisors.
I. Every prime factor of a number is an exact divisor of that number.
II. Every composite number is the product of all its prime factors.
III. A common divisor of two numbers is a divisor of their sum and of their difference; also, of any multiple of either of them.
IV. The G. c. D. of two or more numbers is the product. of all their common prime factors.

2d. Of Multiples and Dividends.

V. Every multiple of a number contains every prime fac. tor of that number.
VI. The L. c. м. of two or more numbers contains every prime factor of each number, and no other factors ; and any prime factor occurs in the L. c. M. as often as it occurs in that number which contains it the greatest number of times.
VII. If two or more numbers are prime to each other, their L. C. M. is their product.

WRITTEN EXERCISES.
141. To resolve a number into its prime factors.

1. What are the prime factors of 390 ?

Explanation. Since 390 is an even number, divide it by its least prime divisor 2 , and the quotient by the prime divisor 3, and the resulting quotient by §, and as the quotient 13 is prime, the division can be carried no further. Hence, $2 \times 3 \times 5 \times 13=390$ (Prin. II) and $2,3,5$, and 13 are the prime factors of 390.

OPERATION.
2) 390
3) 195
5) 65

13

In like manner, find the prime factors or divisors of 2. 495. | 3. 968. | 4. \%56.| 5. 1089.| 6. 8064.| \%. 1728.
142. To find the prime factors commone to two or more numbers.

1. What are the prime factors common to 42,63 , and 105 ?

Explanation. The prime number: is an exact divisor of all the given numbers, and 7 of all the quotients obtained; and since no number greater than 1 will divide the last set of quotients, 3 and 7 are the only prime factors common to 42 ,

OPERATEON.

3) 42 ,	63,	105
7) 14,	21.	35
2,	3 ,	5

Rules for Finding the Prine Factors.
1st. Of a Composite Number:
Divide the given number by any prime divisor of it, and the quotient in the same manner, and so continue the division until the quotient is a prime number. The several divisors and the last quotient are the prime factors required.

2d. Common to two or more numbers:
Divide by any prime number that is an exact divisor of each of them, and the resulting quotients in the same manner, until they contain no common factor. The divisors will be the prime factors required.

Find the prime factors common to

2. 144 and 180.	5. 36,48 , and 72.	8. 96,144 , and 130.

3. 336 and 420. 6. 42, 63, and 84. 9. 168, 256, and 320.
4. 462 and 460. 7. 48,72 , and 96. $10.325,540$, and 625.

143. To find the G.c.d. of two or more numbers.

1. What is the G. c. D. of 126,168 , and 210 ?

Explanation. By factoring, we find 2,3 , and 7 to be the prime factors common to all the given numbers. The product of these prime divisors is the G. c. D. of 126, 168, and 210 (Prin. IV). $2 \times 3 \times 7=42$, G.c. .

operation.

2) 126, 168, 210
$\begin{array}{r}3 \\ \hline \\ \hline 63, \quad 84, \quad 105 \\ 7 \\ \hline 21, \quad 28, \quad 35 \\ \hline 3, \quad 4, \quad 5\end{array}$

In the same manner, find the G. C. D. of
2. 128 and 324.|5. 28, 42, and 56.
3. 394 and $672 . \mid 6.84,126$, and 210.
4. 272 and $425.17 .52,78$, and 416.
4. 27 and 425. 7. 52, 78, and 416. $10.28,84,168$, and 336.
8. $16,24,48$, and 72.
9. $60,84,108$, and 132.
11. Find the G. C. D. of 814 and 962.

Explanation. The operation is the same, whether the ordinary form of division is used, or the vertical lines. The latter is the shorter and more convenient.

Dividing 962 by 814 gives the remainder 148 ; next, dividing 814 by 148 gives the remainder 74 ; lastly, dividing 148 by 74 gives no remainder. The last divisor, 74 , is the G. c. d.

This may be shown as follows :

1. Since 74 is a divisor of 148 , it is a divisor of 148×5 or 740 (Prin. III) ; therefore 74 is a divisor of $740+74$ or 814 (Prin. III). Again, since 74 is a divisor of 814 and 148 , it is a divisor of $814+148$, or 962 . Hence, 74 is a common divisor of 814 and 962 .
2. Every common divisor of 814 and 962 is a divisor of $962-814$, or 148 (Prin. III); hence, every common divisor of 814 and 962 is a common divisor of 814 and 148. Again, every common divisor of 814 and 148 is a divisor of $814-148 \times 5$, or 74 .
3. It has been proved (1) that 74 is a common divisor of 814 and 962. and (2) that every common divisor of 814 and 964 is a divisor of 74. Therefore, since no number greater than 74 is a divisor of 74, it follows that 74 is the G. C. D. required.

Find the G. C. D. of the following sets of numbers:
12. 825 and 960. |15. 961 and 11%. |18. 5355 and 6545.
13. 689 and 1573. 16. 1379 and 2401. 19. 4155 and 24720.
14. 304 and 10%. 17. 2121 and 1313. 20. 715 and 264429.

Rules for Finding the G. C. D.

1st. By Factoring :
Resolve the given numbers into their prime factors; the product of all the prime factors that are common is the G.C.D. (Prin. IV.)

2d. By Continued Division :

Divide the greater number by the less, and the divisor by the remainder, if any, and so continue to divide the last divisor by the last remainder, till nothing remains. The last divisor is the G. C.D.

Find the G. c. D. of the following numbers:
21. 1233 and 19180.
22. 388, 399, and 580.
23. 174,580 , and 448.
24. 72, 84, 66, and 176 .
25. 84, 336, 420, and 504.
26. 132, 396, 528 , and 660.

WRITTEN EXERCISES.

144. To find the t.c. M. of two or more numbers.

1. Find the L. c. m. of 18,28 , and 42.

Explanation. Resolving the given numbers into their prime factors, we find the L. c. M. must contain the factor 3 , turice, 2, twice, and 7, once, and no other factors, (Prin. VI). Hence, $3 \times 3 \times 2 \times 2 \times 7=252$, the L. c. м.

Explanation. Divide the given numbers by the prime factor 2 , and write the quatients in the second line. Divide 9 and 21 by 3 , and write the quotients with 14 , which is not exactly divisible by 3 , in the third line. Again, divide 14 and 7 by 7 , and write the quotients with 3 in the fourth line. The numbers in this line being prime to each other, the process of division terminates here. Now find the continued $2 \times 3 \times 7 \times 3 \times 2=25$, product of the divisors $2,3,7$, and the numbers 3,2 , and 1 in the fourth line. The result, 252 , is the $1 . \mathrm{c} . \mathrm{m}$., since it contains every prime factor of the given numbers, and no other prime factors (Prin. VI).

Find the L. c. m. of the following:
2. 15 and $16 . \mid 3.16,48,54$, and $72 . \mid 4.14,18,24$, and 120.

Rule. 1. Resolve the numbers into their prime factors; the product of these fuctors, each used the greatest number of times it occurs in any one of the given numbers is the L. C. M. Or,
2. Write the numbers in a horizontal line, omitting such of the smaller as are factors of the larger, and divide by any prime factor that is contained in two or more of the given numbers, writing the quotients and undivided numbers underneath.
3. In the same manner, divide the quotients and undivided numbers, and so continue to divide till all the results are prime to each other; then the continued product of all the divisors and the numbers in the last line will be the L. c. m.

Find the L. c. m. of the following sets of numbers:
5. $14,21,45$. 8. $14,18,24,120 . \mid 11.40,80,200,320$.
6. $28,14,35$.
\%. $26,189,56 .|10.39,52,78,11 \%| 13.20,126,150,490$.

REVIEW.

Mental Exercises.

145. 146. How do prime numbers differ from composite numbers?
1. What is the smallest, and what the largest prime factor of 66 ? Name the composite factors of 66.
2. Name all the different values of an exact number of articles that can be bought for 36 cents; for 48 cents.
3. Show that a factor of any number is also a factor of any multiple of that number.
4. What is the least number of which 3,4 , and 5 are factors? Why? (Prin. VII.)
5. Show that a common divisor of two numbers is also a divisor of their sum; of their difference.
6. Show that any number which will exactly divide one of two numbers, will divide their product.
7. Name three common multiples of 6 feet and 9 feet.
8. Name three common measures of $\$ 12$ and $\$ 30$.
9. Name three exact measures of 36 pints; of 48 inches.
10. Why must the L. c. m. of 6 and 20 be greater than 20 ?
11. Why cannot the L. c. m. of 18 and 36 be greater than 36 ?

WRITten ExERCISES.

146. 147. What are the prime divisors common to 1428 and 1092? To 1050 and 3150 ? To 105, 315, and 525 ?
1. Find the G. c. D. of 336 feet and 280 feet; of 825 tons and 1372 tons ; of $\$ 764$ and $\$ 822$; of $\$ 48.33$ and $\$ 62.3 \%$.
2. What is the length of the longest board that will make an exact number of lengths of fence, enclosing a garden 210 feet long and 154 feet wide ?
3. Divide the L. C. M. of 312,260 , and 390 , by their G. c.d.
4. What is the smallest quantity of grain that will fill an exact number of bins, whether they hold 45 , 54,72 , or 81 bushels?
5. Find the least number which, divided by 30,55 , and 105, will give a remainder of 2%.
\%. Find the greatest number that will divide 748 and 927 , and give the remainders 13 and 17 respectively.
6. At what price per head must cattle be purchased by parties who have respectively $\$ 740, \$ 999$, and $\$ 1147$, so that each man may purchase an exact number? How many head can each purchase ?
7. What is the smallest sum of money for which a person can purchase an exact number of horses, at $\$ 170$ each, or of oxen, at $\$ 70$ each ?
8. The L. c. M. of two numbers is 765072 , and the G.c.D. 42. One of the numbers is 3024 ; find the other.

INDUCTIVE EXERCISES.

14\%. 1. If a melon is cut into two equal parts, what is each part called? (94, p. 65.) If into 3 equal parts? If into 4 equal parts?
2. Into how many halves can a unit or thing be divided? Into how many thirds? Fourths? Fifths? Sixths? Sevenths? Eighths? Ninths? Twelfths? Twentieths? etc.
3. What are the largest equal parts into which a unit or whole thing can be divided? The next largest? etc.
4. If a pie is cut into 6 equal pieces, what part of the whole pie is 1 piece? 2 pieces? 3 pieces? 4 pieces? 5 pieces?
5. If a cheese is cut into 2 equal pieces, what part of the whole cheese is 1 piece? If cut into 6 equal pieces? If into 8 equal pieces?
6. What is 1 of 4 equal parts of a unit, or whole thing, called? 3 of 4 equal parts? 2 of 5 equal parts? 5 of 8 equal parts? etc.
7. Numbers representing equal parts of a unit or thing are written thus:

One half is written	$\frac{1}{2}$.	Two thirds	is written	$\frac{2}{3}$.	
One third	$"$	$\frac{1}{3}$.	Five sixths	$"$	$\frac{5}{6}$.
One fourth	$"$	$\frac{1}{4}$.	Nine tenths	$"$	$\frac{9}{10}$
One fifth	$"$	$\frac{1}{5}$.	Eleven sixteenths	"	$\frac{11}{11}$.
One sixth	"	$\frac{1}{6}$.	Seven fiftieths	"	$\frac{7}{60}$.

Forty-three two-hundredths is written $\frac{4.3}{200}$.
8. What is meant by 1 half of an apple? 1 third of a pound? 1 fourth of a mile? 1 sixth of $\$ 12$?
9. If 10 quarts of chestnuts are divided among 5 boys, into how many parts is the whole divided? What part of the whole does 1 boy receive? 2 boys? 3 boys? 4 boys?
10. Which is greater, thirds, or fourths? Sixths, or fifths? Fourths, or fifths? Sevenths, or ninths?
148. Principles. I. The value of one of the equal parts into which a unit or whole thing is divided, depends upon their number.
II. The Less the number of parts, the greater their value; and the greater the nUmber of parts, the less their value.

2DEFFINTIONSC

149. A Fraction is one or more of the equal parts of a unit, or of anything regarded as a whole.
150. The Unit of a Fraction is the unit, or whole, which is divided into equal parts.
151. A Fractional Unit is one of the equal parts into which the unit of the fraction is divided, and takes its name and value from the number of parts into which the unit or the whole thing is divided.

Thus, if 1 pound is divided into 4 equal parts, the unit of the fraction is 1 pound, and the fractional unit, 1 fourth of a pound.
152. A fraction is usually expressed by a sign of division (91), being composed of two numbers, called the Numerator and Denominator, one written above the other, with a line betwẹen them. Hence,
153. A fraction may be regarded as an expression of unexecuted division, the numerator corresponding to the dividend, the denominator to the divisor, and the fraction itself to the quotient.
154. The Denominator of a fraction is the number written below the line, and shows the number of equal parts into which the integer is divided.
155. The Numerator of a fraction is the number written above the line, and shows how many of the equal parts are used.

Thus, in the fraction $\frac{5}{8}, 8$, the denominator, shows that the integer is divided into 8 equal parts, named eighths, and 5 , the numerator, shows that 5 of the 8 equal parts are used.
156. The Terms of a fraction are the numerator and the denominator.

Thus, 7 and 8 are the terms of the fraction $\frac{7}{8}$.
Fractions are named Preper, or Improper, according to their value.
15\%. A Proper Fraction is a fraction whose numerator is less than its denominator; hence, its value is less than 1. Thus, $\frac{8}{4}, \frac{7}{10}$, and $\frac{55}{91}$ are proper fractions.
158. An Improper Fraction is a fraction whose numerator equals or exceeds its denominator; hence, its value is equal to, or greater than 1.

Thus, $\frac{4}{8}, \frac{8}{2}, \frac{25}{6}$, and $\frac{108}{24}$ are improper fractions.
159. A Mixed Number is a number composed of an integer and a fraction united.

Thus, $9 \frac{4}{5}$ is a mixed number, and is equivalent to $9+\frac{4}{5}$.
160. The Value of a fraction is the quotient of its numerator divided by its denominator.

Thus, the value of $\frac{9}{3}$ is 3 ; of $\frac{10}{5}$ is 2 ; of $\frac{12}{7}$ is $1 \frac{5}{7}$.
161. The Reciprocal of a number is 1 divided by that number.

Thus, the reciprocal of 7 is $1 \div 7$ or $\frac{1}{7}$; of 13 , it is $1 \div 13$, or $\frac{1}{13}$; the reciprocal of $\frac{6}{7}$ is $1 \div \frac{8}{7}=1 \times \frac{7}{6}=\frac{7}{6}$, or the reciprocal of a fraction is the fraction inverted.
162. An integer is changed to a fractional form by writing 1 under it for a denominator. Thus, $\mathrm{y}=\frac{7}{7}$; $15=\frac{15}{1}$, etc.
163. Since a fraction may be regarded as an expression of unexecuted division, all changes in the terms of a fraction will affect the value of the fraction according to the laws of division (105), and is equivalent to substituting the words numerator, denominator, and ralue of the fraction, for the words dividend, divisor, and quotient, respectively, as shown in the following illustrations:
I. $\left\{\begin{array}{l}\frac{6}{9} \times 3=\frac{18}{9} \\ \frac{6}{9} \div 3=\frac{6}{3}\end{array}\right.$

1st. The value of the fractional unit remains the same, but the number of fractional units is 3 times as great.
2d. The value of the fractional unit is increased 3 times, but the number of fractional units remains the same.

Hence, the value of the fraction, in both cases, is multiplied. (105, I.)
II. $\left\{\begin{array}{l}\frac{6}{9} \div 3=\frac{2}{9} \\ \frac{6}{9} \times 3=\frac{6}{27}\end{array}\right.$

1st. The value of the fractional unit remains the same, but the number of fractional units is 3 times as small.

2d. The value of the fractional anit is diminished 3 times, but the number of fractional units remains the same.
Hence, the value of the fraction, in both cases, is divided. (105, II.)
III.

$$
\left\{\begin{array}{l}
\frac{6 \times 3}{9} \times 3=\frac{18}{27} \\
\frac{6}{9} \div 3 \\
9 \div 3
\end{array}=\frac{2}{3}\right.
$$

1st. The value of the fractional unit is 3 times as small, but the number of fractional units is 3 times as great.
2 d . The value of the fractional unit is 3 times as great, but the number of fractional units is 3 times as small.
Hence, the value of the fraction, in either case, is not changed. (105, III.)

The foregoing illustrations render obvious the following:
164. General Principles.
I. Multiplying the numerator, or $\}$ Multiplies the value Dividing the denominator, $\}$ of the fraction.
II. Dividing the numerator, or $\}$ Divides the value of Multiplying the denominator, $\}$ the fraction.
III. Multiplying or dividing both $\}$ Does not change the terms, by the same number $\}$ value of the fraction.

REDUCTION OF FRACTIONS.

165. The Reduction of a Fraction consists in changing its terms without altering its value.
166. To reduce fractions to ligher or lower terms.

Mental Exercises.

1. In 3 fourths how many eighths?

Analysis.-Since 1 equals 8 eighths, 1 fourth equals $\frac{1}{4}$ of 8 eighths, or $\frac{2}{8}$; and 3 fourths equal 3 times $\frac{2}{8}$, or $\frac{6}{8}$. Hence, $\frac{3}{4}=\frac{6}{8}$.
2. One half is how many eighths? Tenths? Twelfths?
3. One third of a year is how many sixths of a year?
4. Two thirds of a mile are how many ninths of a mile?
5. Express the value of $\frac{4}{3}$ in terms 3 times as large.
6. Name some equivalent fractions for thirds. Fourths.
7. Show that multiplying both terms of $\frac{2}{3}$ by 4 does not change the value of the fraction.
8. The number of twelfths in a unit is how many times the number of fourths? Thirds? Sixths?
9. Express $\frac{1}{2}$, $\frac{3}{4}$, and $\frac{5}{6}$ each as 12 ths; as 24 ths; as 36 ths.
10. How are 6ths changed to 30ths? 7ths to 28ths?
11. Express $\frac{5}{3}$ in 27 ths. In 36 ths. In 63 ds . In 45 ths.
12. Of what numbers are the denominators of $\frac{3}{8}, \frac{1}{12}$, and $\frac{7}{16}$ multiples?

Change
13. $\frac{4}{5}$ to six equivalent fractions having higher terms.
14. $\frac{3}{4}$ and $\frac{6}{7}$ to fractions having terms 4 times as great.
15. How are fractions changed to higher terms?

Ans. By Multiplication. (163, III, 1st.)
16. How many thirds are 6 ninths?
analysis.-Since 1 third equals 3 ninths, 6 ninths are as many thirds as 3 ninths are contained times in 6 ninths, which is 2 times. Hence, 6 ninths equal 2 thirds. $\frac{6}{8}=\frac{2}{3}$.
17. How many fourths in $\frac{9}{12}$? In $\frac{8}{16}$? Sixths in $\frac{12}{1}$?
18. Express $\frac{16}{24}$ in terms 1 eighth as large.
19. Show that dividing the terms of $\frac{1}{2} \frac{5}{0}$ by 5 does not change the value of the fraction.
20. Change $\frac{1}{2} \frac{5}{5}$ to a fraction having lower terms; $\frac{21}{28} ; \frac{3}{4} \frac{2}{4}$.
21. What common divisor have the terms of $\frac{12}{1} \frac{2}{8}$? $\frac{20}{25}$? $\frac{27}{56}$?
22. Express the value of $\frac{12}{2} \frac{2}{4}$ in terms $\frac{1}{2}$ as great; $\frac{1}{3} ; \frac{1}{4}$.
23. Express $\frac{12}{1 \frac{2}{5}}$ in parts 3 times as great in value.
24. Is $\frac{16}{2} \frac{6}{4}$ in its lowest terms? Why not? Name two common factors of its terms. Why is $\frac{2}{3}$ equal to $\frac{16}{2}$?
25. Express $\frac{15}{20}$ in its lowest terms; $\frac{18}{27} ; \frac{30}{40} ; \frac{24}{36} ; \frac{1}{32}$.
26. How is a fraction reduced to lower terms?

Ans. By Division. (163, III, 2d.)
2% How is a fraction changed to its lowest terms?
All higher terms of a fraction are multiples of its lowest terms. A fraction is in its lowest terms when its numerator and denominator are prime to each other.

Written Exercises.

16\%. 1. Change $\frac{7}{9}$ to thirty sixths.
Explanation.-Since the denominator of the re- operation.
quired fraction is 4 times that of the given fraction, we multiply the terms of the fraction by 4. (16G.)
$\frac{7}{9} \times \frac{4}{4}=\frac{28}{36}$
2. Reduce $\frac{3}{8}$ to 24 ths ; to 48ths; to 64ths ; to 96 ths.
3. Change $\frac{4}{5}, \frac{7}{8}, \frac{9}{10}$, and $\frac{3}{4}$ each to 40 ths.
4. Change $\frac{14}{21}, \frac{7}{12}, \frac{23}{2}$, and $\frac{6}{42}$ each to 84 ths.
5. Change $\frac{11}{14}$ and $\frac{19}{21}$ each to 126 ths; to 168 ths.
6. Reduce $\frac{72}{12}$ to its lowest terms.

Explanation.-First divide
OPERATION. the terms of the given fraction by 6 ; then the terms of the resulting fraction by 3 , and the result is $\frac{4}{7}$; and since the terms of $\frac{4}{8}$ are prime to each other, the

$$
\begin{gathered}
\frac{72}{126} \div 6=\frac{12}{21} ; \quad \frac{12}{21} \div \frac{3}{3}=\frac{4}{7} . \\
\text { Or, } \frac{72}{126} \div \frac{18}{18}=\frac{4}{7} .
\end{gathered}
$$ lowest terms of $\frac{72}{126}$ is $\frac{4}{7}$. Or, divide the terms of the given fraction by 18 , the G. c. D.*

In the same manner reduce to their lowest terms :

7. $\frac{24}{36}$.	11. $\frac{46}{104}$.	15. $\frac{81}{567}$.	19. $\frac{304}{1072}$.	23. $\frac{14}{15} \frac{8}{59} 6^{\circ}$.
8. $\frac{28}{40}$.	12. $\frac{119}{168}$.	16. $\frac{4}{5} \frac{3}{76}$.	20. $\frac{660}{1158}$.	24. $\frac{4}{92} \frac{72}{6}$.
9. $\frac{3}{84}$.	13. $\frac{288}{480}$.	17. $\frac{512}{676}$.	21. $\frac{320}{1080}$.	25. $\frac{684}{11172}$.
10. $\frac{36}{81}$.	14. $\frac{1}{156} 9$.	18. $\frac{91}{119}$.	22. $\frac{8055}{875}$.	26. $\frac{5188}{69} 1{ }^{1}$.

168. To change an integer, or a mixed number, to the form of an improper fruction.

Mental Exercises.

1. How many halves in 1 ? Thirds? Fourths? Sixths? How many sixths in 5?

Analysis.-Since in 1 there are 6 sixths, in 5 , there are 5 times 6 sixths, or 30 sixths. Hence, $5=\frac{30}{6}$.
2. How many fourths of a yard in 3 yards? 6 yards?
3. How many eighths of a dollar in \$4? \$7? \$9?
4. In 6 bushels how many half-bushels? How many fourths? Sixths? Eighths? Twelfths?

[^2]5. How is an integer changed to fourths? To sevenths?
6. How many fourths in $6 \frac{3}{4}$?

Analysis.-Since in 1 there are 4 fourths, in 6 there are 6 times 4 fourths, or $\frac{24}{4}$. Hence, $6 \frac{3}{4}=\frac{24}{4}+\frac{3}{4}=\frac{27}{4}$.
\%. How many sevenths of a week in 3 weeks? In 4丐 weeks? In $2 \frac{6}{7}$ weeks?
8. How many twelfths in a year? In $3 \frac{5}{12}$ years?
9. How is an integer or mixed number changed to the form of an improper fraction?

Written Exercises.

169. 170. Change 5% to a fraction whose denominator is 32.

Operation. $-57 \times 32=1824$. Hence, $57=\frac{1824}{32}$.
2. Change $36 \frac{17}{45}$ to an improper fraction.

Operation. $-36 \frac{17}{45}=36+\frac{17}{45} ; 36 \times 45+17=1637$. Hence, etc.
For explanation, see "Analysis" in Mental Exercises.
3. Change 125 to a fraction whose denominator is 25 .
4. In 49 bushels of wheat how many sixtieths of a bushel?
5. How many 16 ths of a pound in 25 pounds?
6. In $\$ 316$ how many 8ths of a dollar ? 25ths? 12ths?
7. Change 14 and 29 each to 36ths.
8. Change 42 and 75 each to 50 ths.
9. Change 128 and 206 each to 63 ds .
10. Change $31 \frac{11}{12}$ and $5{ }^{7} \frac{5}{12}$ each to 12 ths.
11. Change $87 \frac{5}{27}$ and $105 \frac{23}{27}$ each to 2% ths.
12. Change $245 \frac{3}{40}$ and $92 \frac{19}{40}$ each to 40 ths.
13. Change $27 \frac{29}{30}$ months to thirtieths of a month.
14. Change 45 to a fraction having 18 for its denominator.
15. Change to improper fractions $19 \frac{15}{17} ; 65 \frac{7}{4}$; $204 \frac{13}{6}$.
16. What improper fraction is equivalent to $421 \frac{11}{63}$?

1\%. How many poor families can be supplied with $\frac{1}{8}$ of a ton of coal each from " $7 \frac{5}{8}$ tons?

1\%0. To change an improper fraction to the form of an integer or mixed number.

Mental Exercises.

1. Change $\frac{25}{6}$ to the form of a mixed number.

Analysis.-Since 6 sixths equal 1,25 sixths equal as many times 1 as 6 sixths is contained times in 25 sixths, which is $4 \frac{1}{6}$ times. Hence, $\frac{25}{6}=25 \div 6=4 \frac{1}{6}$.
2. How many times 1 is $\frac{14}{4}$? $\frac{21}{9}$? $\frac{47}{8}$? $\frac{75}{12} ? \frac{84}{9}$?
3. How many yards in $\frac{50}{4}$ of a yard? How many pecks in $\frac{45}{8}$ of a peck? How many dollars in $\$ \frac{75}{10}$?
4. How many pounds in 42 quarter-pound packages of tea? In 36 half-pound packages? In 65 eighth of a pound packages?
5. How is any number of sixths changed to ones, or to an integer ?
6. How is any number of eighths changed to ones? Tenths? Twelfths? Why?
\%. How is an improper fraction changed to the form of an integer or mixed number?
Written Exemcises.

1\%1. 1. Change $\frac{245}{14}$ to the form of a mixed number.
Operation. $-\frac{245}{14}=245 \div 14=17 \frac{1}{2}$. Hence, $\frac{245}{14}=17 \frac{1}{2}$.
2. In $\frac{347}{8}$ of a dollar, how many dollars?
3. In $\frac{1025}{3} \frac{25}{}$ of a bushel, how many bushels?

Change to integers or mixed numbers:

4. $\frac{81}{16}$.	8. $1 \frac{1025}{95}$.	12. $\frac{256}{64}$.	16. $\frac{608}{72} 4$.
5. $\frac{33}{13}$.	9. $\frac{2464}{16}$.	13. $\frac{23}{3} \frac{8}{5}$.	1\%. $\frac{2500}{65}$
6. $\frac{1000}{27}$.	10. $\frac{975}{21}$.	14. $374 \frac{4}{12}$.	18. $\frac{12861}{366}$.
7. $\frac{275}{15}$.	11. $\frac{664}{29}$.	15. $\frac{5064}{288}$.	19. $\frac{513}{133}$.

20. What is the value of $\frac{775}{31}$? Of $\frac{810}{24}$? Of $\frac{1485}{86}$? Of $\frac{8635}{140}$? $16 \frac{975}{23} \frac{6}{6}$? $\frac{37000}{820}$?

1\%2. To change fractions to equivalent fractions having a common denominator.

MENTAL EXERCISES.

1. How many 6ths in 1 ? $\operatorname{In} \frac{1}{2}$? $\frac{2}{3}$? 8ths in $\frac{1}{4}$? $\frac{3}{4}$?
2. Change $\frac{1}{2}$ and $\frac{3}{4}$ to 4 ths. To 8 ths. To 12ths.
3. How can $\frac{2}{3}$ and $\frac{5}{6}$ be changed to 12ths? To 24ths? To 36ths? (166, 1 Ex.)
4. If the denominator be multiplied by any number, how is the value of the fraction preserved? Why?
5. Change $\frac{4}{5}$ and $\frac{7}{10}$ to 20ths. To 30ths. To 40ths.
6. How can $\frac{8}{10}$ and $\frac{12}{20}$ be changed to 5 ths? (166, 16 Ex.)
\%. If the denominator be divided by any number, how is the value of the fraction preserved? Why?
7. Change $\frac{8}{12}$ and $\frac{6}{18}$ to thirds. To 6ths.
8. Change $\frac{1}{3}$, $\frac{2}{3}$, and $\frac{5}{9}$ to 9 ths. To 18ths.
9. Change $\frac{5}{8} \cdot$ and $\frac{7}{12}$ to 24 ths. To 48ths.
10. What is a multiple of a number? A common multiple of two or more numbers? (133.)
11. Name a multiple of 3 . Of 4 . Of 6 . Of 8 .
12. Name a common multiple of 3 and 4 . Of 6 and 9.
13. Name the least common multiple of 4 and 5 .
14. What is the least common multiple of the denominators of $\frac{1}{2}$, $\frac{2}{3}$, and $\frac{3}{4}$? Of $\frac{1}{2}, \frac{3}{8}$, and $\frac{5}{6}$? Of $\frac{4}{5}$, $\frac{3}{4}$ and $\frac{9}{10}$?
15. Name two common multiples of 4 and 6 . Their least common multiple.
16. Name four fractions that can be changed to 24ths.
17. Reduce $\frac{3}{4}$ and $\frac{5}{7}$ to equivalent fractions having 28 for their common denominator.
18. What is the least number of which the denominators of $\frac{1}{6}, \frac{3}{8}$, and $\frac{7}{12}$ are common factors?
19. Change $\frac{5}{6}, \frac{3}{4}$, and $\frac{1}{2}$ to fractions of equal value having the least common denominator.

1\%3. A Common Denominator is a denominator common to two or more fractions.

A common denominator of two or more fractions is a common multiple of their denominators.
184. The Least Common Denominator of two or more fractions is the least common multiple of their denominators.

> Written ExERCISES.

1\%5. 1. Change $\frac{1}{2}, \frac{2}{3}$, and $\frac{3}{4}$ to equivalent fractions having a common denominator.

> OPERATION.

Explanation.-Multiply both terms of each of these fractions by the product of all the denominators except its own. The values of the fractions will not be changed (164, III), and the denominators of the new fractions will be equal, because each will be equal to the product of all the given denominators, 2,3 , and 4 .

$$
\begin{aligned}
& \frac{1 \times 3 \times 4}{2 \times 3 \times 4}=\frac{12}{24} \\
& \frac{2 \times 2 \times 4}{3 \times 2 \times 4}=\frac{16}{24} \\
& \frac{3 \times 2 \times 3}{4 \times 2 \times 3}=\frac{18}{24}
\end{aligned}
$$

Change to fractions having a common denominator :
2. $\frac{2}{3}$ and $\frac{4}{6}$. \mid 4. $\frac{9}{12}$ and $\frac{6}{7} . \left\lvert\, 6 . \frac{3}{6}\right., \frac{1}{4}$, and $\frac{3}{10} . \left\lvert\, 8 . \frac{7}{15}\right., \frac{2}{3}$, and $\frac{5}{6}$.
3. $\frac{1}{6}$ and $\frac{5}{7}$. 5 . $\frac{7}{15}$ and $\frac{5}{9} .17 \cdot \frac{5}{6}$, $\frac{5}{8}$, and $\frac{2}{3} . ~ 9 . \frac{7}{12}, \frac{4}{9}, \frac{2}{3}$, and $\frac{1}{4}$.
10. Reduce $\frac{5}{6}, \frac{8}{15}$, and $\frac{7}{12}$ to equivalent fractions having the least common denominator.

Explanation.-The L. c. m. of the denominators is 60 . Dividing this by each of the denominators, the quotients are 10 , 4, and 5 . Multiplying both terms of $\frac{5}{6}$ by 10 , both terms of $\frac{8}{15}$ by 4 , and both terms of $\frac{7}{12}$ by 5 , the results are $\frac{50}{60}, \frac{32}{60}$, and $\frac{35}{60}$. These have the least common denominator, since 60 is the L.C. M. of the given denominators. (174.)

Fractions should first be reduced to their lowest terms, and integral and mixed numbers to the form of improper fractions.

Change to equivalent fractions having the least common denominator :
11. $\frac{5}{9}, \frac{7}{8}$, and $\frac{11}{24}$.
12. $\frac{3}{7}, \frac{2}{3}$, and $\frac{1}{2} \frac{3}{1}$.
13. $\frac{3}{4}, \frac{7}{12}$, and $\frac{9}{20}$.
14. $\frac{6}{7}, \frac{5}{14}$, and $\frac{24}{49}$.
15. $1 \frac{6}{7}, \frac{9}{14}, \frac{5}{12}$, and $\frac{15}{2}$.
16. $\frac{2}{3}, \frac{15}{1}$, $\frac{4}{9}$, and $\frac{6}{15}$.

$$
\begin{aligned}
& \text { 17. } \frac{3}{4}, 3 \frac{1}{8}, \frac{7}{12} \text {, and } 6 . \\
& \text { 18. } 2 \frac{5}{6}, 1 \frac{2}{3}, 4 \text { and } \frac{4}{8} . \\
& \text { 19. } \frac{7}{11}, 4 \frac{1}{2}, \frac{2}{33} \text {, and } 7 \frac{3}{8} . \\
& \text { 20. } \frac{2}{3}, \frac{1}{3}, \frac{3}{14}, \text { and } 3 \frac{1}{4} . \\
& \text { 21. } \frac{8}{3}, \frac{5}{18}, \frac{4}{27}, \frac{2}{3} \text {, and } \frac{7}{12} . \\
& \text { 22. } \frac{3}{8}, 2 \frac{3}{4}, \frac{5}{16}, \frac{21}{44} \text {, and } \frac{7}{256} \text {. }
\end{aligned}
$$

ADDITION AND SUBTRACTION OF FRACTIONS.

Mental Exercises.

1\%6. 1. What is the fractional unit of $\frac{3}{5}$? Of $\frac{4}{5}$? How many fifths are $\frac{3}{5}$ and $\frac{4}{5}$? How many times. 1 ?
2. What is the sum of $\frac{5}{9}$ and $\frac{7}{9}$? The difference?
3. What is the numerator of the sum of $\frac{3}{8}$ and $\frac{7}{8}$? Of the difference?
4. What is the denominator of the sum, and of the difference, of $\frac{3}{8}$ and $\frac{7}{8}$?
5. How are fractions having a common denominator added or subtracted?
6. What is the fractional unit of $\frac{2}{3}$? Of $\frac{5}{6}$? Can $\frac{2}{3}$ and $\frac{5}{6}$ in their present form be added? Why not? Can one be subtracted from the other? Why not?
\%. How many 6ths is $\frac{2}{3}$? What is the sum of $\frac{4}{6}$ and $\frac{5}{6}$? The difference?
8. What change must be made in $\frac{3}{4}$ and $\frac{2}{3}$ before their sum or their difference can be found? What is their sum? How many times 1? What is their difference?
9. How are fractions having different denominators added or subtracted?
10. Find the sum of $\frac{1}{2}$ and $\frac{2}{3}$. Of $\frac{3}{4}$ and $\frac{1}{3}$. Of $\frac{1}{2}$ and $\frac{5}{8}$.
11. Find the sum of $\frac{4}{5}$ and $\frac{3}{4}$. Of $\frac{3}{5}$ and $\frac{2}{3}$. Of $\frac{4}{8}$ and $\frac{5}{6}$.
12. Find the difference between $\frac{2}{3}$ and $\frac{4}{6}$.
13. Find the difference between $\frac{5}{8}$ and $\frac{5}{8}$; 量 of a toa and $\frac{x^{3}}{10}$ of a ton.
14. Belle having $\$ 1$, gave $\$ \frac{3}{8}$ for a book and $\$ \frac{1}{4}$ for a slate. What did she pay for both? What part of $\$ 1$ had she left?
15. James having $\$ \frac{5}{8}$ gave $\$ \frac{1}{4}$ for a neck-tie ; what had he left?
16. If the sum of two fractions is $\frac{7}{12}$ and the less is $\frac{1}{6}$, what is the greater?
17. A man bought $3 \frac{1}{2}$ tons of coal at one time, and $4 \frac{7}{8}$ at another; how much did be buy in all?

Analysis.-He bought the sum of $3 \frac{1}{3}$ and $4 \frac{7}{8}$ tons. 3 and 4 are 7, and the sum of $\frac{1}{2}$ and $\frac{7}{8}$ is $\frac{11}{8}$, or $1 \frac{3}{8}$, which added to 7 makes $8 \frac{3}{8}$ tons. Hence, etc.
18. Walter had $\$ 3$, he earned $\$ 2 \frac{3}{4}$ more, and his father gave him $\$$?
19. From a piece of silk containing $9 \frac{1}{2}$ yards, $3 \frac{3}{4}$ yards were cut. How many yards remained?

Analissis.-The difference between $9 \frac{1}{2}$ and 3_{4}^{3}. $\frac{1}{2}$ equals $\frac{2}{4}$; and as $\frac{3}{4}$ cannot be taken from $\frac{2}{4}$, take 1 or $\frac{4}{4}$ from 9 , leaving 8 , and add it to $\frac{2}{4}$, making $\frac{6}{4} ; \frac{3}{4}$ from $\frac{6}{4}$ leaves $\frac{3}{1}$, and 3 from 8 leaves 5 . Hence, $5 \frac{3}{4}$ yards remained. $9 \frac{1}{3}-3 \frac{3}{4}=5 \frac{3}{3}$.
20. From a piece of land containing $12 \frac{3}{8}$ acres, $5 \frac{2}{3}$ acres were sold. How much land was left?
21. How much less than 3 is $\frac{3}{7}+\frac{1}{2}+\frac{3}{8}$?
22. Find the value of
$\frac{7}{8}+\frac{1}{3}$
$\frac{1}{3}+\frac{3}{4}$
$\frac{5}{6}-\frac{1}{3}$
$\frac{1}{2}-\frac{3}{2}$

$$
\begin{aligned}
& \frac{2}{3}+\frac{5}{8}+\frac{1}{6} \\
& \frac{7}{8}+\frac{3}{4}+\frac{1}{3} \\
& \frac{4}{8}+\frac{3}{4}+\frac{1}{3} \\
& \frac{7}{10}+\frac{4}{5}-\frac{3}{8}
\end{aligned}
$$

$5 \frac{1}{8}+6 \frac{1}{2}$
$12 \frac{4}{9}+4 \frac{2}{3}$
$14 \frac{7}{8}-7 \frac{3}{4}$
$9 \frac{3}{6}-2 \frac{7}{10}$

1\%'. Principle. In order that fractions may be added or subtracted, they must express parts of like units, and be reduced to equivalent fractions having a common denominator, if their denominators are different.

WRitten ExERCises.

1\%8. 1 . Find the sum of $\frac{5}{9}, 1 \frac{4}{5}$, and $\frac{11}{15}$.
Operation. $-\frac{5}{9}+1 \frac{4}{5}+\frac{11}{15}=\frac{25}{45}+\frac{81}{45}+\frac{33}{45}=3 \frac{4}{45}$.
Explanation.-Change the given numbers to equivalent fractions laving the least common denominator, which is 45 . (174.) Write the sum of the numerators over the common denominator, and $\frac{1399}{45}=3_{45}^{4}$ is the required sum.
2. Find the sum of $\frac{5}{12}, \frac{7}{10}, \frac{3}{4}$, and $\frac{7}{30}$. Of $\frac{13}{27}, \frac{7}{5}, \frac{1}{6}$, and $\frac{5}{18}$.
3. Find the sum of $16 \frac{5}{9}, 23 \frac{2}{3}$, and $41 \frac{3}{5}$.

Operation. $-16 \frac{5}{3}+23 \frac{2}{3}+41 \frac{3}{5}=80+\frac{82}{45}=81 \frac{37}{45}$.
Explanation.-The sum of the integers is 80 , and of the fractions $\frac{8}{4} \frac{2}{45}=1 \frac{137}{45}$, which added to 80 makes $81 \frac{37}{45}$, the reqnired sum.
4. Find the sum of $27,36_{\frac{9}{14}}$, and $57 \frac{2}{3}$. Of $84 \frac{7}{8}, 102 \frac{6}{7}$.
5. Find the difference between $\frac{7}{9}$ and $\frac{13}{24}$.

Operation. - $\frac{7}{9}-\frac{13}{2} 4=\frac{5}{7} \frac{6}{2}-\frac{3}{7} \frac{9}{2}=\frac{56-\frac{39}{7}}{2}=\frac{17}{7}$.
Explanation.-Change the given fractions to equivalent fractions having the least common denominator, which is 72 . Write the difference of the numerators over the common denominator, and $\frac{1 \frac{7}{2}}{2}$ is the required difference. $\frac{7}{8}-\frac{13}{72}=\frac{17}{72}$.
6. From $\frac{13}{13}$ subtract $\frac{3}{4}$. From $1 \frac{7}{8}$ subtract $\frac{9}{14}$.
7. From $156 \frac{7}{21}$ subtract $85 \frac{5}{12}$.

Explanation.-Reduce $\frac{7}{27}$ and $\frac{5}{12}$ to equiva- operation. lent fractions having the least common denomi- $156 \frac{7}{2}=156 \frac{28}{84}$ nator. Then, since $\frac{35}{85}$ cannot be taken from $\frac{28}{84}$, take 1 or $\frac{84}{84}$ from 156, leaving 155 , and add to $\frac{28}{84}$, making $\frac{112}{84}$, and $\frac{35}{89}$ from $\frac{112}{84}$ leaves $\frac{7 \pi}{84}$ or $\frac{11}{12}$, and $8 \tilde{0}_{\frac{5}{12}}=\frac{85 \frac{35}{84}}{70 \frac{77}{84}}$ 85 from 155 leaves 70 . Hence, etc.
8. From ${ }^{7} 73 \frac{5}{8}$ subtract $27 \frac{3}{11}$. From $106 \frac{8}{13}$ subtract $38 \frac{4}{5}$.

1. When the integers or mixed numbers are small, they may be reduced to improper fractions.
2. All fractional results should be reduced to their lowest terms, and improper fractions to whole or mixed numbers.
3. From the preceding exercises and explanations the rules ara obvious.

Find the value of

12 .		10. $819+6{ }_{24}$.
10. $\frac{3}{24}+\frac{21}{32}$.	15. $6 \frac{4}{5}-1 \frac{1}{6}+\frac{7}{10}$.	20. $86-49 \frac{7}{36}$.
11. $1 \frac{7}{12}-\frac{7}{15}$.	16. $28 \frac{1}{2}+4 \frac{9}{16}-\frac{11}{12}$.	21. $\frac{17}{27}+5 \frac{6}{7}-1 \frac{1}{8}$.
12.	17. $40-16 \frac{7}{3}$.	22. $26-3 \frac{9}{22}+7 \frac{1}{4}$
. $\frac{2}{3}+\frac{7}{8}+$	18. 73 9 $\frac{9}{10}-2 \frac{1}{15}$.	23. $\frac{37}{48}+10 \frac{21}{32}-1$

24. From the sum of $28 \frac{1}{2}$ and $16 \frac{5}{8}$ subtract the difference between $47 \frac{2}{3}$ and $32 \frac{4}{5}$.
25. From a cask of sugar containing $1 \% 8_{\frac{1}{2}}$ pounds, $92 \frac{5}{8}$ pounds were taken. How much remained?
26. A farmer having $246 \frac{7}{10}$ acres of land, bought $57 \frac{1}{4}$ acres more, and then sold $120 \frac{2}{3}$ acres. How much had he left?

2\%. A young man received a salary of $\$ 60 \frac{5}{8}$ a month, and paid for his board $\$ 30 \frac{1}{2}$, for washing $\$ 6 \frac{1}{4}$, and for other expenses $\$ 12 \frac{9}{10}$. What had he left?
28. What number added to $45 \frac{5}{14}-7 \frac{8}{21}$ makes $250 \frac{6}{7}$?
29. Two horses cost $\$ 525 \frac{7}{8}$, and one of them cost $\$ 284 \frac{1}{3}$; what was the cost of the other?
30. If I pay $\$ 3475 \frac{3}{4}$ for a painting, and sell it at a loss of $\$ 535 \frac{1}{2}$, what do I receive for it? If at a gain of $\$ 225 \frac{1}{3}$?
31. A merchant owned $\frac{11}{14}$ of a vessel, and sold $\frac{3}{7}$ of it. What part did he still own?
32. From 350 bushels take the difference between $156 \frac{1}{8}$ bushels and $208 \frac{7}{3} \frac{7}{2}$ bushels.
33. A boat has on board $38 \% \frac{1}{4}$ tons of coal, of which $108 \frac{2}{3}$ tons are cannel, and the remainder anthracite. How much is anthracite?

Find the second member of the following equations:
34. $\frac{5}{11}-\frac{1}{3}+\frac{2}{3}-\frac{3}{5}=$?
35. $4 \frac{1}{2}+16 \frac{5}{18}-7-3 \frac{7}{8}=$?
36. $16 \frac{1}{2} \frac{7}{4}+11 \frac{3}{8}-21 \frac{7}{16}-9 \frac{1}{4}=$?

3\%. $18 \frac{4}{15}+38-11 \frac{7}{10}-1 \% \frac{23}{30}=$?

MULTIPLICATION OF FRACTIONS.

Mental ExErcises.*

1\%9. 1. How many sevenths are 3 times 4 sevenths?
2. What part of a mile is 2 times $\frac{3}{8}$ of a mile?
3. At $\$ \frac{7}{8}$ a yard, what will 4 yards of ribbon cost?

ANalysis. -4 times $\${ }_{8}^{7}$, or $\$ \frac{7}{8} \times 4=\$ \frac{28}{8}=\$ 3 \frac{1}{2}$. Or, $\$ \frac{7}{8} \div 4=\$ \frac{7}{7}=\$ 33_{2}^{1}$.
4. If a boy earn $\$ \frac{1}{2}$ a day, what will he earn in 3 days? In 4 days? In 5 days? In 6 days?

Show that multiplying the numerator of $\frac{6}{10}$ by 5 , or dividing the denominator by 5 , multiplies the fraction by 5 . ($\mathbf{1 6 3}, \mathrm{I}$.)
5. Multiply $\frac{7}{16}$ by 4 ; $\frac{5}{9}$ by $7 ; \frac{9}{20}$ by $5 ; \frac{11}{27}$ by $9 ; \frac{3}{11}$ by 8 .

A fraction is multiplied by a number equal to its denominator by removing the denominator. Thus, ${ }_{7}^{6} \times 7=6$.
6. Multiply $\frac{7}{8}$ by $8 ; \frac{9}{10}$ by $10 ; \frac{9}{17}$ by $17 ; \frac{8}{13}$ by 13 .

Cancelling a factor of the denominator multiplies the fraction by that factor. Thus, $\frac{7}{10} \times 5=\frac{7}{2}=3 \frac{1}{2} ; \frac{11}{18} \times 6=\frac{11}{3}=3 \frac{2}{3}$.
7. Multiply $\frac{14}{20}$ by $5 ; \frac{7}{24}$ by $8 ; \frac{8}{15}$ by $3 ; \frac{13}{23}$ by $\%$.
8. At $\$ \frac{9}{16}$ a pound, what will 4 pounds of tea cost?
9. If a horse cats $\frac{3}{8}$ of a bushel of oats in a day, how much will 2 horses eat? 4 horses? 8 horses?
10. At $\$ 5 \frac{3}{8}$ each, what will 4 hats cost?

Analysis. $-\$ 5 \frac{3}{8}=\$ \frac{43}{8}$, and 4 times $\$ \frac{43}{8}=\$ \frac{43}{2}=\$ 21 \frac{1}{2}$. Or, 4 times $\${ }^{\frac{3}{8}}=\$ 12{ }^{12}=1 \frac{1}{2}$, and 4 times $\$ 5=\$ 20 ; \$ 20+\$ 1 \frac{1}{2}=\$ 21 \frac{1}{2}$.
11. Multiply $4 \frac{5}{6}$ by 3 ; 75 $\frac{5}{6}$ by $4 ; 8 \frac{6}{7}$ by 6 ; $7 \frac{9}{10}$ by 5 .
12. At $\$ 4 \frac{3}{4}$ a ton, what will be the cost of 2 tons of coal?
13. What is $\frac{1}{3}$ of 15 yards? $\frac{1}{5}$ of $\$ 25$?
14. Multiplying by $\frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}$, etc., is the same as dividing by what integers?

[^3]15. $\frac{5}{8}$ is how many times $\frac{1}{8}$? What is $\frac{5}{8}$ of 16 ounces?
16. Multiplying $\frac{1}{6}$ of 24 by 5 is the same as multiplying 24 by what fraction?

1\%. Which is greater, $\frac{4}{5}$ of 20 , or $20 \times \frac{4}{3}$? $24 \times \frac{3}{4}$, or $\frac{3}{4}$ of 24 ?
18. When the multiplier is a fraction, the word " of" should be used, and not "times."
19. At $\$ 9$ a barrel, what will $\frac{2}{3}$ of a barrel of flour cost?

Analysis. Since 1 barrel costs $\$ 9, \frac{2}{8}$ of a barrel costs 2 times $\frac{1}{3}$ of $\$ 9$, or $\frac{2}{3}$ of 49 . $\frac{1}{3}$ of $\$ 9$ is $\$ 3$, and $\frac{2}{3}$ of $\$ 9$ is 2 times $\$ 3$, or $\$ 3$.
20. What is $\frac{3}{4}$ of 12 ? $\frac{5}{8}$ of 45 ? $\frac{3}{5}$ of 31 ? $\frac{3}{8}$ of 42 ?
21. If a man can do a job of work in 30 days, in what time can he do $\frac{1}{2}$ of it? $\frac{0}{3}$ of it? $\frac{3}{4}$ of it?
22. At the rate of $\$ 16$ for a ton of hay, what is the value of $\frac{3}{8}$ of a ton? Of $\frac{3}{5}$ of a ton?

Show that multiplying an integer by a fraction is the same as taking the fractional part of the integer.
23. What is $\frac{3}{4}$ of $16 ? 16 \times \frac{3}{4} ? \frac{3}{5}$ of $21 ? 21 \times \frac{3}{6}$?

Multiplying a fraction by an integer, or an integer by a fraction is the same, since either factor may be regarded as the multiplier.
24. At $\$ 8$ a yard, what will $\epsilon \frac{2}{3}$ yards of cloth cost?

Analssis. $6 \frac{2}{3}$ times $\$ 8.6$ times $\$ 8$ are $\$ 48$, and $\frac{2}{3}$ of $\$ 8$ are $\$ 5 \frac{1}{3}$; $\$ 18+\$ 5 \frac{1}{3}=\$ 53 \frac{1}{3}$. Hence, etc.
25. Multiply 7 by $5 \frac{1}{4} ; 12$ by $7 \frac{5}{6} ; 6$ by $9 \frac{2}{3}$.
26. At 12 cents a pound, what will $4 \frac{1}{4}$ pounds of sugar cost? $7 \frac{3}{8}$ pounds? $9 \frac{2}{3}$ pounds ?

2\%. What is $\frac{1}{2}$ of 4 yards? $\frac{1}{3}$ of 9 days? $\frac{1}{2}$ of 6 tenths?
28. What part of 1 is $\frac{1}{3}$ of $\frac{1}{2}$? $\frac{1}{4}$ of $\frac{1}{3}$? $\frac{1}{2}$ of $\frac{1}{6}$?
29. Taking $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, and $\frac{1}{5}$ of a fraction is the same as dividing by what integers?
30. What is $\frac{1}{3}$ of $\$ 12 ? \frac{2}{3}$ of $\$ 12 ? \frac{1}{4}$ of $\frac{8}{8} ? \frac{3}{4}$ of $\frac{8}{8}$?
31. What is $\frac{1}{4}$ of $\$ \frac{4}{25}$? $\frac{2}{3}$ of $\frac{9}{10}$ of a mile?

The word " of" between two fractions is equivalent to the sign (x) of multiplication. Thus, $\frac{3}{8}$ of $\frac{4}{8}=\frac{3}{4} \times \frac{4}{8} ; \frac{6}{7}$ of $10=\frac{6}{7} \times 10$.
32. At $\$ \frac{7}{8}$ a yard, what is $\frac{2}{3}$ of a yard of cloth worth?
analysis. Two times $\frac{1}{3}$, or $\frac{2}{3}$ of $\$_{8}^{7}$. $\frac{1}{3}$ of $\$_{8}^{7}=\$_{27}^{7}$, and 2 times $\$_{\frac{3}{2}}^{\frac{3}{2}}=\$_{12}^{7}$,
33. Multiply $\frac{6}{7}$ by $\frac{1}{4}$; by $\frac{3}{4}$; by $\frac{2}{5} ;$ by $\frac{1}{6} ;$ by $\frac{5}{6} ;$ by $\frac{3}{5}$.
34. What is $\frac{2}{3}$ of $\frac{3}{6}$? $\frac{3}{4}$ of $\frac{8}{8}$? $\frac{4}{5}$ of $\frac{3}{8}$? $\frac{5}{6} \times \frac{3}{4}$?
35. At $\$ \frac{9}{10}$ a gallon, what will $\frac{3}{8}$ of a gallon of syrup cost?
36. At $\$ 6 \frac{2}{3}$ a ton, what will $\frac{3}{4}$ of a ton of coal cost?

ANalysis. It will cost $\frac{3}{4}$ of $\$ 6 \frac{2}{9}$, or 3 times $\frac{1}{4}$ of $\$ 6 \frac{2}{9} ; \$ 6 \frac{2}{9}=\$ \frac{56}{9}$, and $\frac{3}{4}$ of $\$ \frac{56}{9}=\$ \frac{56}{9} \times \frac{3}{4}=\$ \frac{14}{3}=\$ 4 \frac{2}{3}$. Hence, etc.

By cancelling the factors common to the numerators and denominators before multiplying, the operation is shortened, and the answer obtained in the lovest terms.

3\%. What is $\frac{4}{3}$ of $3 \frac{1}{3}$ miles? $\frac{5}{6}$ of $2 \frac{2}{5}$ acres? $\frac{3}{4}$ of $\$ 5 \frac{1}{3}$?
38. What is $\frac{3}{8} \times \frac{2}{9}$? $\frac{7}{10} \times \frac{5}{14}$? $2 \frac{1}{3} \times \frac{3}{4}$? $\frac{4}{8} \times 3 \frac{2}{3}$?

How does cancelling equal factors in the numerator and denominator affect the value of the fraction? Why? (110, II).
39. What will $4 \frac{2}{3}$ cords of wood cost, at $\$ 3 \frac{3}{4}$ a cord?

ANALYSII. $4 \frac{2}{3}=\frac{14}{3}$, and $\$ 3 \frac{3}{4}=\$ \frac{15}{4} ; \$ \$ \frac{15}{4} \times \frac{14}{3}=\$ \frac{35}{2}=\$ 17 \frac{1}{2}$.
40. What is $2 \frac{2}{3}$ times $\$ \frac{6}{7}$? $\frac{3}{6}$ of $4 \frac{1}{6}$ pounds? $3 \frac{1}{2}$ times $\$ 2 \frac{1}{3}$?
41. If a man owning $\frac{7}{8}$ of a vessel, sells $\frac{2}{3}$ of his share, what part of the whole vessel does he retain?
42. If a horse trots $6 \frac{3}{4}$ miles an hour, how far will he trot in $\frac{4}{5}$ of an hour? In $\frac{5}{9}$ of an hour? In $1 \frac{1}{3}$ hours?

Multiply

b	47. 12 by	$4 \frac{1}{2}$ by 5.	55.
$\frac{4}{5}$ by $\%$.	48. 16 by $\frac{2}{3}$.	52. $6 \frac{1}{5}$ by 8 .	56. 12 by $4 \frac{2}{3}$.
by 6.	49. 24 by $\frac{5}{8}$.	53. $12 \frac{2}{5}$ by 6 .	5\%. 11 by ${ }^{7} \frac{1}{3}$.
by	0. 40 by	54. $10 \frac{7}{3}$ by	58. 8 by

What is the value of

61. $\frac{9}{10} \times \frac{4}{3}$? 64 . $\frac{7}{12} \times 3 \frac{3}{7}$? $67.4 \frac{9}{10} \times 1 \frac{3}{7}$? 7 70. $\frac{4}{8}$ of $\frac{10}{7}$ of $\frac{7}{8}$?
71. If a peach-basket hold $\frac{5}{8}$ of a bushel, how much will 3 baskets hold ? 5 baskets? 6 baskets ?
72. At $\$ 5 \frac{2}{3}$ a yard, what will 4 yards of cloth cost? 6 yards? 7 yards? 8 yards?
73. When hay is $\$ 20$ a ton, what must be paid for $\frac{1}{2}$ of a ton? $\frac{1}{3}$ of a ton? $\frac{2}{3} ? \frac{3}{4}$? $\frac{4}{5}$? $\frac{3}{8}$? $\frac{5}{6}$? $\frac{7}{10}$?
74. At $6 \frac{1}{4}$ cents a pound, what will $\frac{4}{b}$ of a pound of rice cost? $1 \frac{2}{3}$ pounds? 8 pounds?
75. John had $\$ \frac{9}{10}$, and gave $\frac{1}{3}$ of it to his sister Nellie. What part of a dollar did he give her? What part had he left?
76. At $\$ 88$ a bushel, what will $\frac{3}{8}$ of a bushel of pears cost? $\frac{3}{4}$ of a bushel? $\frac{3}{10}$ of a bushel?

17\%. If I give $\frac{2}{3}$ of $\$ \frac{9}{10}$ to a beggar, what part of a dollar do I give him? What part have I left ?
\%8. How far is it from New York to Philadelphia, if $\frac{3}{5}$ of 50 miles is $\frac{1}{3}$ of the whole distance?
79. What will $2 \frac{1}{\frac{1}{3}}$ bushels of peaches cost, at $\$ 2 \frac{4}{5}$ a bushel?

Find the value of

80. $\frac{5}{8}$ of 12.	84. $\frac{3}{4}$ of $\frac{1}{2}$ of $\frac{1}{6}$.	88. $4 \frac{1}{2}+\frac{3}{4}-\frac{5}{6}$ of $3 \frac{1}{2}$.
81. $14 \times 1 \frac{5}{7}$.	85. $10 \times \frac{3}{4}$ of $5 \frac{1}{3}$.	89. $\frac{7}{8} \times \overline{7 \frac{1}{2}-4 \frac{3}{4}}$
82. $5 \frac{1}{8} \times \frac{8}{9}$.	86. $\frac{7}{12}$ - $\frac{1}{6}$ of $2 \frac{1}{2}$.	. $\frac{5}{12}$ of $4 \frac{1}{6}+\frac{3}{8}$ of 6
83. $\frac{11}{12} \times 6$.	8\%. $\frac{8}{8}+4 \frac{2}{3} \times 1 \frac{1}{4}$.	91. $15 \times \frac{7}{10}-\frac{1}{2}$ of

180. Principles. I. The product of two or more factors, whether integral or fractional, is the same in whatever order they are used.
II. The value of a fraction is multiplicd, by multiplying its numerator, or dividing its denominator by any integer. (164, I).
III. The product of an integral or fractional number by a fraction is equal to such a part of the multiplicand as the multiplier is of the unit 1 .

Written Exercises.

181. In the multiplication of fractions, either

1st. One of the factors is a fractional number, and the other integral. Or,

2d. Both factors are fractional.

1. Multiply ${ }_{2}^{5}{ }^{5}$ by 8 .

Operation. $\frac{5}{24} \times 8=\frac{5 \times 8}{24}=\frac{5}{3}=1 \frac{2}{3}$. Or, $\frac{5}{24} \times 8=\frac{5}{24 \div 8}=\frac{5}{3}=1 \frac{2}{3}$.
2. Multiply 8 by $\frac{5}{24}$.

Operation. $8 \times \frac{5}{24}=\frac{8 \times 5}{24}=\frac{5}{3}=1 \frac{3}{3}$. Or, $\overline{8 \div 2} \overline{4} \times 5=\frac{5}{3}=1 \frac{1}{3}$. (180, Prin. I).

Or, both factors in the above examples may be put in fractional form and written thus : $\frac{5}{24} \times \frac{8}{1}$, of $\frac{8}{1} \times \frac{5}{24}=1 \frac{2}{3}$.

It is obvious, that multiplying a fraction by an integer, or an integer by a fraction, is essentially the same. (Prin. I).

By the use of a vertical line and cancellation, we have one uniform process, by which all the operations in multiplication of fractions are much abbreviated and simplified.

When either factor is an integer, place it on the right of the line; when both factors are fractional, place the numerators on the right, and the denominators on the left. The product of the numbers on the right, divided by the product of those on the left, will give the required product.
3. Multiply $16 \frac{5}{9}$ by 12 .

We may multiply the integral and fractional parts separately, and unite the results ; or, reduce the mixed numbers to improper fractions, and multiply as in Examples 1 and 2.
5. Multiply $\frac{9}{14}$ by $\frac{8}{15}$.

6. Multiply $\frac{5}{8}$ of $2 \frac{2}{3}$ by $\frac{3}{4}$ of 12 .

Multiply
7. 56 by $\frac{7}{8}$.
8. 120 by $\frac{8}{15}$.
9. $\frac{1}{2} \frac{4}{5}$ by 70 .
10. $\frac{9}{28}$ by $\frac{7}{18}$.
11. $8 \frac{1}{2}$ by $\frac{4}{5}$.
12. $\frac{16}{21}$ by $3 \frac{1}{9}$.
13. $7 \frac{2}{9}$ by $5 \frac{3}{1.0}$.
14. $\frac{5}{6}$ of $\frac{2}{3}$ by $\frac{4}{5}$ of $4 \frac{1}{2}$.
15. 15 by $\frac{7}{9}$ of $\frac{11}{21}$ of 6 .
16. Multiply $142 \frac{7}{15}$ by $30 ; 84$ by $32 \frac{9}{16} ; 47 \frac{5}{8}$ by $18 \frac{2}{3}$.

Rules for the Multiplication of Fractions.
I. When either factor is a fractional number:

Multiply together the integer and the numerator of the fraction, and write the product over the denominator.
II. When both factors are fractional numbers:

Multiply together the numerators for the numerator of the product, and the denominators for the denominator of the product.

All factors common to the numerators and the denominators should be cancelled before multiplying.

Find the cost of
17. 125 bushels of potatoes, at $\$ \frac{4}{5}$ a bushel.
18. $28 \frac{5}{16}$ yards of cloth, at $\$ 4$ a yard.
19. 56 pounds of coffee, at $\$ \frac{3}{8}$ a pound.
20. $\frac{7}{8}$ of a yard of silk, at $\$ \frac{9}{10}$ a yard.
21. 120 pounds of wool, at $37 \frac{1}{2}$ cents a pound.
22. $\frac{3}{4}$ of $15 \frac{1}{3}$ yards of satin, at $\$ 4 \frac{2}{6}$ a yard.
23. $214 \frac{3}{4}$ pounds of beef, at $9 \frac{1}{2}$ cents a pound.
24. $32 \frac{5}{8}$ tons of coal, at $\$ 6$ 축 a ton.
25. $15 \frac{1}{4}$ quarts of milk, at $6 \frac{1}{4}$ cents a quart.
26. $\frac{4}{5}$ of 20 cords of wood, at $\$ 4 \frac{9}{16}$ a cord.

27 . $26 \frac{3}{8}$ pounds of fish, at 43 cents a pound.
28. $\frac{5}{12}$ of $87 \frac{1}{2}$ acres of land, at $\frac{4}{5}$ of $\$ 60_{1} \frac{3}{0}$ an acre.
29. $75 \frac{5}{6}$ bushels of wheat, at $\$ 1_{\frac{7}{10}}$ a bushel.
30. $112 \frac{1}{2}$ barrels of flour, at $\$ 7 \frac{1}{5}$ a barrel.
31. $106 \frac{1}{2}$ baskets of peaches, at $\$_{\frac{9}{10}}$ a basket.
32. $\frac{1}{3}$ of. $\frac{5}{6}$ of 9 tons of hay, at $\$ 15 \frac{1}{\frac{1}{5}}$ a ton.
33. A machinist's wages were $\$ 4 \frac{1}{2}$ a day, and by overwork, he made $\$_{5}^{3}$ a day more. What did he earn in $10 \frac{2}{3}$ days?
34. If I purchase a carriage for $\$ 245 \frac{1}{8}$, and sell it for $\frac{5}{8}$ of the cost, what do I lose? If for $1 \frac{1}{8}$ times the cost, what do I gain?
35. If a family burn $1 \frac{3}{8}$ tons of coal a month, how much will 4 families burn in $5{ }_{15}^{7}$ months?
36. The sum of three factors is 25 ; the least is $4 \frac{1}{2}$, the greatest is $12 \frac{3}{4}$. What is the product of the three?

Find the product of
37. $\frac{1}{1} \frac{1}{2}$ and $\frac{15}{15} . \mid$ 41. $7 \frac{2}{9}$ and $\frac{2}{5}$ of $\left.6 \frac{2}{3} \cdot \right\rvert\,$ 45. $\frac{5}{6}, 2 \frac{3}{8}$, and $3 \frac{7}{15}$.
38. $\frac{32}{8} \frac{2}{2}$ and $\frac{27}{27}$. 42. $\frac{3}{16}, \frac{21}{24}$, and $\frac{48}{48}$. 46. $4 \frac{1}{8}, 2 \frac{1}{14}$, and $1 \frac{1}{6}$. 39. $6 \frac{3}{4}$ and $2 \frac{14}{2}$. 43 . $8 \frac{8}{23}, 4 \frac{3}{8}$, and $2 \frac{1}{2}$. 47 . $7 \frac{1}{9}, 1 \frac{5}{16}$, and $11 \frac{3}{7}$. 40. $15 \frac{4}{5}$ and $3 \frac{8}{9} .144$. $19 \frac{5}{8}$ and $\frac{3}{5}$ of $\frac{10}{23}$. 48. 昝 of 8 and $\frac{3}{4}$ of $3 \frac{1}{2}$.

Find the value of
49. $\frac{6}{7} \times \frac{4}{5}+\frac{2}{3}$ of $\frac{4}{5} \times 2$. 50. $6 \frac{2}{3} \times 1 \frac{3}{4} \times \frac{1}{1 \frac{1}{1 T}-\frac{1}{2}}$. 51. $\left(\frac{6}{7}-\frac{2}{3}\right) \times\left(\frac{3}{6}+\frac{2}{3}\right)$. 52. $3 \frac{6}{7} \times \frac{5}{9}-2 \frac{2}{3} \times \frac{3}{10}$. 53. $3 \frac{2}{5} \times 5 \frac{1}{2} \times \frac{7}{8}-\frac{1}{6}$ of $2 \frac{1}{1} \frac{3}{8}$.
54. $\left(4 \frac{1}{2} \times \frac{7}{8}+1 \frac{3}{8}\right) \times \overline{3 \frac{1}{3}-\frac{9}{10}}$.
55. $\left(19 \frac{4}{5}-3 \frac{3}{4}\right) \times\left(3 \frac{4}{5}-2 \frac{3}{7}\right)$.
56. $19 \frac{4}{5}-3 \frac{3}{4} \times 3 \frac{4}{5}-2 \frac{3}{7}$.
57. 194 - $-\left(3 \frac{3}{4} \times 3 \frac{4}{5}-2 \frac{3}{7}\right)$.
58. $3 \frac{5}{9}+2 \frac{7}{8} \times 10 \frac{2}{7}+12 \frac{6}{7}-8 \frac{9}{63}$.
59. $6 \frac{2}{3} \times 5 \frac{3}{4}-4 \frac{4}{5} \times 2 \frac{5}{6}+1 \frac{1}{37}$.
60. $6 \frac{2}{5} \times \overline{5 \frac{3}{4}-44} \times 2 \frac{5}{6}+\frac{19}{20}$.

DIVISION OF FRACTIONS.

MENTAL EXERCISES.

182. 183. What is the quotient of 6 sevenths divided by 3 ?
1. What is the quotient of 8 ninths divided by 2 ? by 4 ?
2. What is $\frac{1}{4}$ of $\frac{8}{8}$? $\frac{1}{3}$ of $\frac{9}{10}$? $\frac{1}{2}$ of $\frac{6}{11}$? $\frac{1}{6}$ of $\frac{1}{1} \frac{2}{7}$?
3. Dividing by $2,3,4,5$, ctc., is the same as multiplying by what fractions?
4. If 3 pounds of coffee cost $\$ \frac{5}{7}$, what will 1 pound cost?

ANALYSIS. $\frac{1}{3}$ of $\$_{7}^{6}$, or $\$_{7}^{6} \div 3=\$_{7}^{2}$; or, $\$_{7}^{6} \times{ }_{3}=\$ \$_{7}^{2}$. Hence, etc.
6. If 4 dozen eggs cost $\$ 5$, what is the cost of 1 dozen?

How may a fraction be divided by an integer?
7. Find the value of $\frac{1}{4}$ of $\frac{8}{11}$; of $\frac{10}{10} \div 5$; of $\frac{1}{7}$ of $\frac{1}{1} \frac{1}{5}$.

Show that dividing the numerator of $\frac{9}{10}$ by 3 , or multiplying the denominator by 3 , divides the fraction by 3 . ($\mathbf{1 6 3}, \mathrm{II}$).
8. Divide $\frac{4}{5}$ by 2 ; $\frac{7}{9}$ by 3 ; $\frac{9}{10}$ by 4 ; $\frac{14}{25}$ by $\%$.
9. At $\$ 4$ a yard, how many yards will $\$ 18 \frac{2}{3}$ buy?

Analysis.-As many yards as $\$ 4$ is contained times in $\$ 18 \frac{2}{3}$, or $\frac{4}{4}$ of $18 \frac{2}{3} . \quad 18 \frac{2}{3}=\frac{56}{3}$, and $\frac{1}{4}$ of $\frac{56}{3}=\frac{56}{3} \rightarrow 4=\frac{14}{3}=4 \frac{2}{3} . \quad$ Or, $\frac{1}{4}$ of $18 \frac{2}{3}$ is 4 , and $2 \frac{2}{3}$ remainder ; and $\frac{1}{4}$ of $2 \frac{2}{3}$ or of $\frac{8}{3}$ is $\frac{2}{3}$, and $4+\frac{2}{3}=4 \frac{2}{3}$ yards.
10. Divide ${ }^{7} \frac{1}{2}$ by $5 ; 9 \frac{1}{4}$ by 7 ; $10 \frac{4}{5}$ by $9 ; 12 \frac{2}{3}$ by 4 .
11. How many times will 163 gallons of vinegar fill a vessel that holds 2 gallons? 3 gallons?
12. If a family burn $\frac{3}{5}$ of a ton of coal in a week, how many weeks will $6 \frac{1}{2}$ tons last? $8 \frac{3}{4}$ tons?
13. Divide $\frac{3}{4}$ of 18 by $\frac{2}{5}$ of $15 ; \frac{3}{5}$ of 28 by $\frac{3}{10}$ of 30 .
14. Divide $16 \frac{2}{3}$ by $5 ; 12 \frac{3}{5}$ by $9 ; 25 \frac{1}{2}$ by $12 ; 3 \frac{1}{9}$ by $\%$.
15. How many thirds in 1 ? in 2 ? in 3 ? in 4 ?
16. In 1 how many times $\frac{1}{2}$? $\frac{1}{3}$? $\frac{1}{4}$? $\frac{1}{5}$? $\frac{1}{6}$? $\frac{1}{7}$? $\frac{1}{8}$? $\frac{1}{10}$?

Show that dividing by $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, etc., is the same as multiplying the dividend by $2,3,4$, etc.

1\%. How many times is 1 contained in 3 ? $\frac{1}{2}$ in 3 ? $\frac{1}{3}$ in 3 ?
18. In 2 how many times $\frac{1}{4}$? $\frac{3}{4}$? In 3 how many times $\frac{1}{6}$? 2 ? $\frac{3}{5}$?
19. Dividing 5 by $\frac{3}{4}$ is the same as multiplying 5 by what fraction?
20. At $\$ \frac{5}{6}$ each, how many shovels can be bought for $\$ 9$?

Analysis.-As many as $\${ }_{8}^{5}$ is contained times in $\$ 9 ; \$ 9=\${ }^{554}$, and 5 sixths is contained in 54 sixths $10 \frac{1}{5}$ times. Or, $\$_{6}^{5}$ is contained in $\$ 1$ $\frac{6}{5}$ times, and in $\$ 9,9$ times $\frac{5}{5}$, or ${ }_{5}^{54}=10 \frac{1}{5}$ times. Hence, etc.
21. 6 is how many times $\frac{2}{3} ? \frac{3}{4} ? \frac{6}{7} ? \frac{3}{8} ? \frac{5}{12} ? \frac{7}{9} ? \frac{9}{20}$?

How may an integer be divided by a fraction ?
22. How many books can be bought for $\$ 8$, at $\$ \frac{4}{5}$ each ? At $\$ \frac{5}{8}$ each ? At $\$ \frac{6}{7}$? At $\$_{10}^{3}$? At $\$ \frac{7}{12}$?
23. If $\frac{3}{4}$ of a yard of cloth make a vest, how many vests will 9 yards make? 12 yards? 21 yards?
24. At $\$ 1 \frac{2}{3}$ each, how many diaries will $\$ 10$ purchase?

Analysis.-As many as $\$ 1 \frac{2}{3}=\$ \frac{\pi}{3}$ is contained times in $\$ 10$, or $\${ }_{3}^{30} \div \$_{5}^{5}=6$ times ; hence, 6 diaries can be bought for $\$ 10$.
25. Divide 14 feet by $\frac{5}{6}$ of a foot; by $\frac{7}{8}$; by $1 \frac{2}{3}$; $2 \frac{3}{4}$; $3 \frac{1}{2} ; 4 \frac{1}{2}$.
26. How many barrels, each holding $2 \frac{1}{2}$ bushels, will 9 bushels of apples fill? 15 bushels? 20 bushels? $27 \frac{1}{2}$ bushels?

What is the reciprocal of a fraction? (161).
Show by an example that multiplying an integer by the reciprocal of a fraction divides the integer by that fraction.
2%. How many times can $\frac{3}{16}$ of a yard of ribbon be cut from $\frac{9}{16}$ of a yard? From $\frac{12}{16}$? $\frac{8}{16}$? $\frac{15}{16}$?

When the divisor and dividend have a common denominator, how is the quotient found?
28. How many boxes of figs at $\$ \frac{2}{5}$ a box will $\$ \frac{2}{3}$ purchase?

Analusts.-As many as $\$ \frac{2}{5}$ is contained times in $\$_{3}^{2} ; \$_{5}^{2}=\$ \frac{6}{15}$, and $\$ \$_{5}^{2}=\$ \frac{10}{15} ; \$ \frac{8}{15}$ is contained in $\$ \frac{10}{5} 1 \frac{2}{5}$ times. Hence, etc.
29. Divide $\frac{3}{4}$ by $\frac{2}{3} ; \frac{4}{6}$ by $\frac{1}{6} ; \frac{5}{8}$ by $\frac{1}{3} ; \frac{7}{10}$ by $\frac{2}{8}$.
30. How many pounds of rice, at $\$ \frac{1}{8}$ a pound, can be bought for $\$ \frac{3}{4}$? For $\${ }^{9} \frac{9}{6}$? For $\$ \frac{11}{2}$?

When the divisor and dividend have not a common denominator, how is the quotient found?
31. At $\$ \frac{7}{8}$ a day, in what time will a boy earn $\$ 5 \frac{1}{4}$? $\$ 10 \frac{1}{2}$?

Reduce mixed numbers to improper fractions; then divide as you divide one fraction by another.
32. How many times can a measure holding $\frac{3}{4}$ of a bushel be filled from $6 \frac{1}{2}$ bushels? $\quad 7 \frac{2}{3}$ bushels?
33. How many days work, at $\$ 1 \frac{1}{2}$ a day, will $\$ 6 \frac{3}{4}$ obtain?

Analisis.-As many as $\$ 1 \frac{1}{2}$ is contained times in $\$ 6 \frac{3}{4}$. $\$ 1 \frac{1}{2}=\$ \frac{3}{2}$ $=\$$ ${ }^{6} ; \$ 6 \frac{3}{4}=\frac{27}{4} ; \$^{\frac{27}{4}} \div \$ \frac{9}{4}=\$ \frac{27}{4} \times \frac{4}{6}=\frac{27}{6}=4 \frac{1}{2}$. Hence, etc. Or, multiply the dividend by the reciprocal of the divisor, $\frac{3}{3}$.
34. Divide $4 \frac{1}{2}$ by $1 \frac{2}{3} ; 5 \frac{1}{4}$ by $2 \frac{3}{4} ; 6 \frac{1}{3}$ by $2 \frac{1}{6}$.
35. At $\$ 1 \frac{1}{8}$ a bushel, how many bushels of peaches can be bought for $\$ 6 \frac{3}{4}$? For $\$ 11 \frac{1}{4}$? For $\$ 9 \frac{1}{2}$?
36. If $\frac{3}{4}$ of a yard of silk cost $\$ \frac{7}{8}$, what will 1 yard cost?

Analysis. -1 yard will cost 4 times $\frac{1}{3}$, or $\frac{4}{3}$ of $\$ \frac{7}{8}=\$ \frac{28}{24}=\$ 1 \frac{1}{6}$.
3\%. If $\frac{3}{8}$ of a box of figs is worth $\$ \frac{4}{5}$, what is 1 box worth?
38. How old is Jessie, if $7 \frac{1}{2}$ years is $\frac{5}{12}$ of her age?
39. At $\$ \frac{4}{5}$ a pound, how much tea can be bought for $\$ \frac{7}{8}$?

Divide
40. $\frac{9}{10}$ of a rod by 6 .
41. $\frac{16}{2}$ of an acre by 8 .
42. $\frac{1}{2}$ of $\$ 2 \frac{1}{4}$ by $\$ \frac{4}{5}$.
43. 14 quarts by $3 \frac{1}{2}$.

Find the value of
48. $\frac{5}{6}$ of $2 \frac{1}{2} \div \frac{3}{4}$.
49. $3 \frac{1}{8} \div \frac{1}{4}$ of $1 \frac{1}{2}$.
50. $8 \frac{1}{3}+6 \frac{1}{4} \div 5$.
51. $12 \frac{1}{4} \div 3 \frac{1}{2}-\frac{15}{16}$.
52. $\frac{3}{8} \times 6 \div \frac{5}{6}$ of $1 \frac{2}{3}$.

Divide
44. $3 \frac{1}{2}$ gallons by 12 .
45. $7 \frac{1}{5}$ miles by 9 .
46. $3 \frac{2}{3}$ weeks by $\frac{6}{7}$.

4\%. $10 \frac{1}{4}$ acres by $2 \frac{1}{2}$ acres.
53. $\left(\frac{1}{7} \times \frac{5}{4}+1 \frac{1}{2}\right) \div \frac{3}{7}$.
54. $8 \div\left(\frac{2}{3}\right.$ of $\left.\frac{3}{4} \times 6+\frac{1}{4}\right)$.
55. $4 \frac{1}{8} \div \frac{11}{24}+2 \frac{1}{8} \times \frac{2}{3}$.
56. $\overline{16 \frac{1}{2}}-2 \frac{5}{8} \times \overline{1 \frac{1}{2} \div \frac{3}{8}}$.
$5 \% .\left(\frac{5-2}{6}+\frac{6-4}{3}\right) \div 8$.
183. Principles.-I. A fraction is divided by dividing its numerator, or by multiplying its denominator by any integer. (163, II.)
II. Any integral or fractional number is divided by multiplying it by the RECIPROCAL of the divisor.

Written Exercises.

184. In the division of fractions, the divisor and dividend are either-

1st. The one an integral and the other a fractional number. Or, 2d. Both are fractional.

By the use of the vertical line and cancellation, all the operations in division of fractions may be reduced to one uniform process, simple, and often much abbreviated, only differing from multiplication by inverting the terms of the divisor (Prin. II).

1. Divide $\frac{15}{1} \frac{5}{6}$ by 5 . OPERATION.
$\left.\left.\frac{\phi}{16}\right|^{16}\right|^{1 \$ 3}=\frac{3}{16}$.
$(163$, II.)
2. Divide $\frac{5}{6}$ of $3 \frac{7}{8}$ by $2 \frac{3}{4} \times \frac{5}{12}$.
operation.

$$
\frac{5}{6} \text { of } 3 \frac{7}{8}=\frac{155}{48} ; 2 \frac{3}{4} \times \frac{5}{12}=\frac{55}{48} .
$$

2. Divide 5 by $\frac{15}{15}$. OPERATION.

$$
{ }^{3} \times \left\lvert\, \begin{gathered}
\$ \\
3 \\
3 \\
\hline
\end{gathered} \frac{16}{\frac{16}{5 \frac{1}{3}}}\right.
$$

$$
\frac{155}{48} \div \frac{55}{48}=\frac{155}{48} \times \frac{48}{55}=\frac{31}{11}=2 \frac{9}{1 \mathrm{~T}} \text { Ans. }
$$

The references, with the analyses given in the Mental Exercises, are quite sufficient to enable the pupil to understand and to explain every operation under the head of Writien Exercises.

Divide
4. $\frac{16}{18}$ by 12 .
5. $\frac{35}{36}$ by 15 .
6. 42 by $\frac{7}{9}$.
\%. $\frac{9}{23}$ by $\frac{12}{3}$.
8. $7 \frac{1 \pi}{9}$ by $2 \frac{2}{7}$.
9. $\frac{12}{17}$ by $5 \frac{1}{7}$.
10. $15 \frac{1}{2}$ by 14 .
11. $\frac{-9}{14}$ by $2 \frac{5}{8}$.
12. $6 \frac{9}{10}$ by 23 .
13. $6 \frac{7}{8}$ by $\frac{4}{1 \mathrm{~T}}$ of 5 .
14. $\frac{3}{11} \times \frac{4}{8} \times 2 \frac{3}{4}$ by $1 \frac{5}{8}$.
15. $\frac{3}{4}$ of $\frac{12}{2} \frac{2}{7}$ by $3 \frac{5}{9}$.

Rules for the Division of Fractions.

I. When the divisor is an integral number-

1. Divide the numerator, or multiply the denominator of the fraction by the integer. $(\mathbf{1 6 3}, \mathrm{II}$.$) Or,$
2. If a mixed number, and more convenient, divide the integer and fraction separately and unite the results.
II. When the divisor is a fractional number-
3. Change integers and mixed numbers to the form of "fractions; then multiply the dividend by the reciprocal of the divisor. (183, II.)

When the pupil is familiar with the various processes and the principles involved, as taught in the preceding Mental and Written Exercises, all operations in Multiplication and Division of Fractions may be performed by this one

General Rule.

Change ail integers and mixed numbers to the form of improper fractions. Inverting the terms of the aivisors, place all numerators on the RIGHT, and all denominators on the LEFT of a vertical line. Cancel equal factors, if any, and divide the product of the remaining factors on the right by the product of the remaining factors on the left.

Find the value of

16. $45 \div \frac{4}{18}$.	19. $\frac{51}{64} \div 3 \frac{5}{8}$.	22. $15 \frac{5}{8} \div 1 \frac{7}{8}$.
17. $112 \div \frac{9}{88}$.	20. $119 \div \frac{7}{8}$.	23. $73 \frac{1}{2} \div 7 \frac{1}{2}$.
18. $15 \frac{3}{8} \div \frac{9}{16}$.	21. $\frac{56}{106} \div \frac{4}{2}$.	24. $\frac{14}{23} \div 2 \frac{1}{3}$.

25. $43 \frac{1}{5} \div 9$.	$27.56 \div 1 \frac{5}{8}$.	29. $3 \frac{23}{3} \div 2 \frac{2}{3} \times 3 \frac{1}{8}$.
26. $\frac{18}{18} \div 7 \frac{1}{2}$.	28. $\frac{69}{80} \div \frac{5}{8}$ of $3 \frac{2}{7}$.	30. $\frac{4}{8}$ of $8 \frac{8}{9} \div 7 \frac{8}{16}$.

31. What number multiplied by $\frac{9}{14}$ will produce $64 \frac{2}{7}$?
32. What number divided by $12 \frac{3}{8}$ will give $9 \frac{7}{8}$?
33. The dividend is 4 times $3 \frac{3}{8}$, the divisor $\frac{3}{7}$ of $70 \frac{7}{10}$; what is the quotient?
34. If 175 bushels of potatoes are raised on $2 \frac{1}{3}$ acres, what is the average yield an acre?
35. At $\$ \frac{3}{4}$ a pound, how many pounds of tea can be bought for $\$ 3 \% \frac{1}{2}$? For $\$ 28 \frac{5}{8}$? For $\$ 40 \frac{4}{5}$?
36. At $\$ 4 \frac{2}{3}$ a bushel, how many bushels of clover-seed can be bought for $\$ 17 \frac{1}{2}$? For $\$ 37 \frac{1}{3}$? For $\$ 75 \frac{5}{6}$?

37 . If 1 man consume $\frac{8}{8}$ of a pound of meat, how many men will consume $\frac{3}{4}$ of $9 \frac{3}{5}$ pounds? $\frac{5}{8}$ of 32 pounds?
38. At $\$ 1 \frac{4}{5}$ a bushel, how many bushels of wheat will pay for $\frac{2}{3}$ of a barrel of flour, at $\$ 10$ a barrel?
39. If $9 \frac{1}{3}$ bushels of corn weigh $528 \frac{1}{2}$ pounds, what is the average weight of a bushel?
40. How many pounds of coffee can be bought for $\$ 45 \frac{1}{3}$, at $\$ \frac{3}{8}$ a pound ? At $\$ \frac{2}{5}$? At $\$ \frac{8}{10}$? At $\$ \frac{5}{16}$?
41. If $\frac{4}{8}$ of a lot is worth $\$ 1200$, what is the whole worth?
42. How many tons of hay, at $\$ 16 \frac{1}{4}$ a ton, will $\$ 203 \frac{1}{3}$ buy?
43. How many acres of land will $\$ 2187 \frac{1}{2}$ purchase, at $\$ 131 \frac{1}{4}$ an acre? At $\$ 84 \frac{3}{8}$? At $\$ 75_{\frac{7}{10}}$?
44. If a man spend $\$ \frac{3}{8}$ a day for cigars, in what time will he spend $\$ 25 \frac{1}{2}$? $\$ 50$? $\$ 125 \frac{9}{10}$? $\$ 75$?
45. Allowing $1 \frac{7}{8}$ bushels to an acre, how many acres can be sown with $156 \frac{1}{4}$ bushels of wheat? $112 \frac{2}{3}$ bushels ?
46. If $\frac{3}{1^{3}}$ of a farm cost $\$ 3155$, what is the cost of the whole?

Find the value of
47. $3 \frac{3}{4}$ of $2 \frac{3}{16} \div 5 \frac{5}{8}$ of $8 \frac{8}{8}$; of $2 \overline{\frac{2}{5} \times 2 \frac{5}{8}} \div \overline{2 \frac{3}{5}-2 \frac{1}{4}}$.
48. $\overline{3 \frac{1}{2} \times \frac{4}{8}} \div \overline{2 \frac{1}{10} \times \frac{4}{13}}$; of $\left(\frac{4}{8}-\frac{6}{26}+\frac{24}{128}\right) \div\left(\frac{2}{3}-\frac{2}{8}+\frac{52}{87}\right)$.
49. Find the value of $\frac{15 \frac{5}{8}}{8 \frac{1}{3}}$.

operation.

$$
\frac{15 \frac{5}{8}}{8 \frac{1}{3}}=15 \frac{5}{8} \div 8 \frac{1}{3}=\frac{125}{8} \div \frac{25}{3}=\frac{125}{8} \times \frac{3}{25}=1 \frac{17}{8} .
$$

Explanation. This example simply means that $15{ }_{5}^{5}$ is to be di vided by $8 \frac{1}{3}$. Similar expressions are sometimes called Complex Frac. tions, and performing the division is called reducing a complex fraction to a simple one.

When the terms of the dividend or divisor are connected by + or -, these operations must be performed before that of division.

Find the value of

The following sets of numbers will give all the exercise upon fractional numbers that may be desired.

Thus, take the first set, $\frac{4}{5}$ and $\frac{2}{3}$; find in their simplest form their sum, difference, product, and lastly, the quotient of the first divided by the other. Treat each set in the double columns in like manner.

58. $\frac{4}{5}, \frac{2}{3}$.	70. $\frac{8}{12}$, $\frac{13}{2}$.	82. $4 \frac{5}{8}, 12 \frac{1}{2}$.	94. $33 \frac{4}{25}, 7 \frac{3}{4}$.
59. $\frac{7}{8}$, $\frac{7}{8}$.	71. $\frac{28}{35}, \frac{9}{12}$.	83. $9 \frac{1}{5}, \frac{14}{20}$.	95. $130 \frac{3}{4}, 5 \frac{1}{8}$.
60. $\frac{5}{12}$, $\frac{2}{7}$.	72. $\frac{25}{75}, \frac{30}{10}$.	84. $56,3 \frac{7}{8}$.	96. $6 \frac{4}{21}, 15 \frac{3}{8}$.
61. $\frac{9}{10}, \frac{5}{8}$.	73. $\frac{7}{8}, \frac{16}{20}$.	85. $16 \frac{4}{9}, 11 \frac{2}{3}$.	97. $90 \frac{6}{11}, 4 \frac{8}{9}$.
62. $\frac{5}{8}, \frac{3}{7}$.	74. $\frac{15}{25}$, $\frac{5}{9}$.	86. ${ }^{7} \frac{3}{4}, 3 \frac{5}{12}$.	98. $100 \frac{5}{7}$, $\frac{1}{1}$
63. $\frac{7}{18}, \frac{2}{5}$.	75. $\frac{21}{51}, \frac{13}{17}$.	87. $\frac{18}{4}, 6 \frac{1}{6}$.	99. $191 \frac{1}{5}, 159 \frac{1}{3}$
64. $\frac{15}{24}, \frac{5}{8}$.	76. $\frac{96}{144}, \frac{36}{60}$.	88. $9 \frac{9}{10}, 15$.	7
65. $\frac{6}{13}$, $\frac{8}{9}$.	77\%. $\frac{32}{56}, \frac{28}{7}$ \%	89. $1 \frac{1}{2} \frac{7}{6}, 14 \frac{1}{4}$.	$16 \frac{15}{16}$
66. $\frac{6}{20}$, $\frac{5}{12}$.	78. $\frac{7}{9}$, $\frac{15}{25}$.	90. $28 \frac{1}{3}, 13 \frac{2}{3}$.	7
67. $\frac{17}{30}, \frac{1}{6}$.	79. $\frac{51}{84}$, $\frac{9}{28}$.	91. $\frac{16}{17}, 17 \frac{3}{8}$.	4, $\overline{71}$
68. $\frac{4}{5}, \frac{20}{21}$.	80. $\frac{63}{8}$, $\frac{11}{121}$.	92. $125,8 \frac{1}{8}$.	$\frac{5}{2}, \frac{14 \frac{1}{4}}{39}$
69. $\frac{8}{14}$, $\frac{3}{5}$.	81. $\frac{112}{3} \frac{1}{3}, \frac{18}{111}$.	93. $\frac{75}{20}, 80$	$\frac{2}{2 \frac{2}{3}}, \overline{3 \frac{9}{18}}$

RRMAMON UMBERSS

185. The relation of one number to another is expressed by the quotient obtained by dividing the number compared by the number with which it is compared.
186. Principle. Only like numbers, whether integral or fractional, can be compared with each other.

Mental ExERCISES.

18\%. To find what part one integer is of another.

1. What part of 5 is 4 ?

Analysis. 1 is $\frac{1}{5}$ of 5 , and 4 is 4 times $\frac{1}{5}$ of 5 , or $\frac{4}{5}$ of 5 . Hence. etc.
2. What part of ${ }^{7}$ is 3 ? Of 8 is 7 ? Of 9 is 2 ?
3. What part of 6 cts . is 1 ct ? ? $\$ 11$ is $\$ 6$?
4. What part of 60 is 40 ? Of 36 is 4 ? Of 42 is 7 ?
5. If a watch cost $\$ 60$, and a chain $\$ 15$, what part of the cost of the watch equals the cost of the chain?
6. If a chest of tea is worth $\$ 36$, what part of a chest can be bought for $\$ 9$? For $\$ 6$? $\$ 12$? $\$ 4$? $\$ 18$? $\$ 27$?
188. To find what part a fraction is of an integer.

1. What part of 7 is $\frac{2}{3}$?

ANALysis. 1 is $\frac{1}{7}$ of 7 , and $\frac{2}{3}$ of 1 is $\frac{2}{3}$ of $\frac{1}{7}$, or $\frac{2}{21}$ of 7 ; or, $\frac{2}{3} \div 7=\frac{2}{21}$.
2. What part of 8 is $\frac{2}{5}$? is $\frac{3}{4}$? is $\frac{2}{7}$? $\frac{5}{6}$? $\frac{7}{8} ? \frac{8}{8}$? $\frac{7}{12}$?
3. What part of $\$ 12$ is $\$ \frac{4}{5}$? Of 10 weeks is $\frac{6}{7}$ of a week?
4. What part of 15 acres is $1 \frac{1}{2}$ or $\frac{3}{2}$ acres? Of 8 is $2 \frac{1}{3}$?
5. What part of $\$ 20$ is $\$ \frac{4}{5}$? $\$ \frac{7}{10}$? $\$ \frac{3}{4}$? $\$ \frac{2}{3}$? $\$ \frac{7}{8}$?
6. If flour bought at $\$ 7$ a barrel is sold at $\$ 8 \frac{1}{4}$, what part of the cost equals the gain?
189. To find what part a fraction is of a fraction.

1. What part of $\frac{7}{8}$ is $\frac{3}{4}$?

Analysis. 1 is $\frac{8}{7}$ of $\frac{7}{8}$, and $\frac{3}{4}$ of 1 is $\frac{3}{4}$ of $\frac{8}{7}$, or $\frac{24}{28}=\frac{5}{7}$.
Or, $\frac{3}{4} \div \frac{7}{8}=\frac{3}{4} \times \frac{8}{7}=\frac{6}{7}$. Hence, etc.
2. What part of $\frac{4}{8}$ is $\frac{1}{2}$? Of $\frac{5}{7}$ is $\frac{1}{6}$? Of $\frac{3}{8}$ is $\frac{1}{7}$? Of $\frac{2}{3}$ is $\frac{3}{5}$?
3. What part of $\frac{9}{10}$ is $\frac{7}{20}$? Of $1 \frac{1}{4}$ is $\frac{7}{8}$? Of $4 \frac{1}{2}$ is $1 \frac{5}{8}$?
4. What part of $\$ 8 \frac{3}{4}$ is $\$ 5 \frac{1}{2}$? Of $5 \frac{5}{6}$ miles is $3 \frac{1}{3}$ miles ?
5. Ella had $\$ \frac{9}{10}$, and spent $\$ \frac{3}{5}$. What part of $\$ \frac{9}{10}$ had she left?
6. At $\$ 1 \frac{3}{8}$ a pound, what part of a pound will $\$ \frac{3}{8}$ buy?
\%. A man bought $\frac{7}{8}$ of an acre of land, and sold $\frac{1}{2}$ of an acre; what part of $\frac{7}{8}$ of an acre had he left?
190. To find a number when a fractional part is given.

1. 24 is $\frac{4}{5}$ of what number?

ANALYsis. If $\frac{4}{5}$ of a number is 24 , $\frac{7}{5}$ of it is $\frac{1}{4}$ of 24 , or 6 ; hence. lhe number is 5 times 6 , or 30 .
2. 60 is $\frac{5}{3}$ of what number? $\frac{6}{11}$ of what? $\frac{4}{6}$? $\frac{12}{7}$? $\frac{3}{4}$?
3. $9 \frac{3}{5}$ is $\frac{1}{4}$ of what number? $\frac{3}{4}$ of what? $\frac{3}{2}$? $\frac{4}{5}$? $\frac{6}{7}$?
4. $\frac{8}{8}$ is $\frac{1}{2}$ of what number? $\frac{2}{3}$ of what? $\frac{4}{3}$? $\frac{5}{6}$? $\frac{7}{8}$?
5. Frank gave 60 cents for a knife, which was $\frac{5}{12}$.of what he paid for a sled; what did the sled cost him?
6. If $\frac{7}{8}$ of a ton of hay is worth $\$ 9 \frac{5}{8}$, what is 1 ton worth?
7. 24 is $\frac{4}{5}$ of how many times 6 ?

Analysis. If $\frac{4}{5}$ of a number is $24, \frac{1}{5}$ of it is 6 ; hence, the number is 5 times 6 , or 30 ; and 6 in 30,5 times.
8. 42 is $\frac{7}{8}$ of how many times 12 ? 8 ? 6 ? 11? 9 ?
9. $14 \frac{2}{3}$ is $\frac{4}{9}$ of how many times 3 ? 11 ? 10 ? 8 ? 12 ?
10. $12 \frac{6}{7}$ is $\frac{9}{14}$ of how many times $\frac{1}{8}$ of 40 ? $\frac{3}{5}$ of 10 ?
11. $\frac{7}{8}$ is $\frac{3}{4}$ of how many times $\frac{1}{3}$ of $\frac{1}{2}$? $\frac{1}{2}$ of $\frac{2}{3}$? $\frac{1}{4}$ of $\frac{2}{3}$?
12. A lady paid $\$ 50$, which was $\frac{5}{3}$ of what she paid for 10 yards of silk; what was the cost of the silk a vard?
13. $\frac{4}{7}$ of 56 is $\frac{4}{9}$ of how many times 20 ? 9 ? 8 ? 10 ? 12 ?
14. $\frac{4}{5}$ of $\frac{3}{4}$ of 40 is $\frac{2}{3}$ of $\frac{1}{2}$ of how many times 8 ? 6 ? 7?
15. $\frac{3}{4}$ of 32 is $\frac{6}{8}$ of 4 times what number?

Analysis. $\frac{3}{4}$ of 32 is 24 , and 24 is $\frac{6}{7}$ of 28 ; 28 is 4 times $\frac{1}{4}$ of 28 , which is 7. Hence, etc.
16. $\frac{5}{8}$ of 72 is $\frac{9}{10}$ of 5 times what number?
17. A merchant sold $\frac{2}{7}$ of a piece of cloth for $\$ 45$, at $\$ 3$ a yard; how many yards in the piece?
18. Paid $\$ 10$ for a pair of pantaloons, which was $\frac{4}{5}$ of 3 times what I paid for a coat ; what did the coat cost?
19. A grocer, after selling $\frac{5}{8}$ of a barrel of sugar, had 60 pounds left; how many pounds did the barrel contain?

PEVIEWG:

Mental Exercises.

191. 192. The sum of two fractions is $\frac{11}{18}$, and one of them is $\frac{1}{3}$; what is the other? What their difference?
1. From what number must $4 \frac{1}{8}$ be taken to leave ${ }^{7} \frac{5}{6}$?
2. The greater of two numbers is $9 \frac{4}{7}$, and their difference $2 \frac{1}{2}$; what is 3 times the less number?
3. The minuend is $12 \frac{7}{8}$, and the subtrahend $7 \frac{7}{4}$; what is $\frac{2}{3}$ of their difference?
4. What number divided by $\frac{5}{12}$ will give a quotient of $3 \frac{5}{6}$?
5. What is the product of $2 \frac{4}{5}$ and $\frac{1}{4}$ of $1 \frac{3}{5}$?
\%. The product of two factors is $\frac{4}{8}$ of 35 , and one of the factors is $4 \frac{2}{3}$; what is $\frac{1}{2}$ of 3 times the other factor?
6. The divisor is $4 \frac{5}{7}$, and the quotient $3 \frac{1}{2}$; what is 4 times $\frac{1}{2}$ of the dividend?
7. Find the sum of $\frac{4}{5}$ of $3 \frac{1}{3}$ and $\frac{5}{6}$. Their difference. Their product. The quotient of the greater by the less.
8. Add 3 to both terms of the fraction $\frac{4}{3}$. Is its value increased, or diminished, and how much?
9. A farmer sold $\frac{3}{7}$ of his sheep and had 80 left; how many sheep had he at first?
10. Sold a sleigh for $\$ 75$, which was $\frac{5}{8}$ of what it cost; what was the loss?
11. How much less than $\$ 5$ will 12 pounds of coffee cost, at $\$ \frac{3}{10}$ a pound? How much more than $\frac{3}{4}$ of 5 times $\$ \frac{3}{5}$?
12. If $\frac{7}{10}$ of a ton of coal cost $\$ 4 \frac{2}{3}$, what will 3 tons cost?
13. At $\$ 14 \frac{3}{6}$ a ton, what will $\frac{3}{4}$ of a ton of hay cost? $\frac{4}{5}$ of a ton?
14. When flour is $\$ 9 \frac{1}{2}$ a barrel, what part of a barrel can be bought for $\$ 6$? For $\$ 7$? For $\$ 4 \frac{3}{4}$?
15. At $\$ \frac{3}{8}$ a bushel, how many bushels of apples can be bought for $\$ 5 \frac{1}{2}$? For $\$ 7 \frac{5}{8}$? For $\$ 9 \frac{1}{4}$?
16. By selling a harness for $\$ 60$, I gained $\frac{3}{7}$ of its cost ; what did it cost?
17. Λ man bought $\frac{1}{2}$ of $\frac{3}{5}$ of an acre of land, and his neighbor bought $\frac{3}{4}$ of the remainder ; which bought the more, and how much?
18. Add 3 to both terms of the fraction $\frac{5}{4}$. Will its value be increased or diminished, and how much?
19. At $\$ 4 \frac{1}{3}$ a yard, what would $\frac{5}{6}$ of a yard of silk cost?
20. Three men bought a pile of wood for $\$ 56$. The first was to have $\frac{3}{8}$ of it, the second $\frac{1}{3}$ of the remainder, and the third what was left ; what was each man's share worth?
21. If 3 yards of shirting cost $\$ \frac{5}{8}$, what will 12 yards cost?
22. If $\frac{7}{16}$ of a bushel of plums cost $\$ \frac{7}{8}$, what will $\frac{3}{4}$ of a bushel cost? $2 \frac{1}{2}$ bushels? $3 \frac{2}{3}$ bushels?
23. If $\frac{9}{10}$ of a bin of coal is worth $\$ 63$, what is $\frac{3}{8}$ of it worth?
24. Paid $\$ 50$ for a harness, and $\frac{4}{5}$ the cost of the harness was $\frac{3}{10}$ of the cost of my horse; what was the cost of both?
2% John, after spending $\frac{2}{5}$ of his money, found that $\$ 6$ was $\frac{2}{3}$ of what he had left; how much had he at first?
25. If $\frac{2}{3}$ of a ton of coal is worth $\$ 4 \frac{4}{5}$, what are $7 \frac{2}{3}$ tons worth? $\frac{1}{4}$ of $12 \frac{1}{2}$ tons? $\frac{1}{2}$ of 15 tons?

Written Exercises.

192. 193. What number diminished by $\frac{2}{5}$ and $\frac{3}{8}$ of itself leaves a remainder of 240 ?
1. What number multiplied by $14 \frac{1}{4}$ will produce $1684 \frac{1}{2}$? Divided by $15 \frac{2}{3}$ will give a quotient of $49 \frac{5}{6}$?
2. If $\frac{5}{2}$ of a yacht is valued at $\$ 3840 \frac{1}{2}$, what is the value of the whole? Of $\frac{3}{4}$? Of $\frac{3}{8}$? Of $\frac{2}{5}$?
3. A has 125 acres of land, which is $1 \frac{2}{b}$ times as much as B has; how many acres has B?
4. Multiply the sum of $\frac{1}{2}, 1_{7}^{2}$, and $\frac{5}{6}$, by the difference of $\frac{4}{15}$ and $\frac{3}{26}$, and divide the product by $\frac{11}{18}$ of $1 \frac{14}{15}$.
5. What is the sum of $\frac{5}{8}$ and its reciprocal?
6. Two men working the same number of days earned $\$ 76 \frac{9}{16}$, one receiving $\$ 25$ and the other $\$ 3 \frac{1}{2}$ a day; how many days did they work?
7. What is the product of $1 \frac{8}{8}$ and its reciprocal?
8. If $3 \frac{3}{4}$ tons of hay cost $\$ 60$, how much can be bought for $\$ 39$? For $\$ 75$? $\$ 120$?
9. What is the quotient of $\frac{9}{14}$ divided by its reciprocal?
10. A merchant deposited $\frac{1}{6}$ of his money in one bank, $\frac{2}{3}$ of it in another, loaned $\frac{1}{3}$ of it, and put the remainder, $\$ 6142$, in his safe ; how much money had he?
11. If $\frac{5}{8}$ of a pound of tea cost $\$.50$, what will $16 \frac{3}{4}$ pounds cost?
12. A and B contract to do a job of work. A does ${ }^{7}$? and $\mathrm{B} \frac{8}{15}$, and B receives $\$ 25$ more than A ; how much did each receive?
13. If $\frac{5}{8}$ of a mill is worth $\$ 10000$, what is $\frac{1}{2}$ of the remainder worth? What is $\frac{2}{3}$ of the whole worth?
14. If $\frac{3}{6}$ of a barrel of flour cost $\$ 6 \frac{3}{5}$, how many barrels can be bought for $\$ 104 \frac{1}{2}$? For $\$ 52 \frac{1}{4}$?
15. How many yards of cloth $\frac{7}{8}$ of a yard wide will line $23 \frac{1}{2}$ yards that is $1 \frac{1}{4}$ yards wide? That is $\frac{3}{4}$ of a yard wide?

1\%. The difference between $\frac{5}{8}$ and $\frac{3}{8}$ of the value of an estate is $\$ 2432$. What is $\frac{1}{3}$ of $\frac{1}{2}$ of the estate worth?
18. What is $\frac{3}{4}$ of an acre of land worth, if $\frac{5}{6}$ is worth $\$ 60$?
19. A and B can build a house in 30 days; B can do the work alone in 45 days. In how many days can A do it alone?
20. If $\frac{3}{15}$ of the rental of a store is paid for taxes, and the owner saves $\$ 880$, what rent does he get?
21. A man bought peaches at $\$_{5}^{3}$ a basket, and sold them for $\$ 1 \frac{1}{4}$ a basket, and gained $\$ 52$. How many baskets did he sell?
22. If $\frac{2}{3}$ of $\frac{6}{7}$ of a piece of work can be done in 16 days, in what time can $\frac{3}{4}$ of the whole work be performed?
23. Find the sum, difference, and product of $19 \frac{3}{8}$ and $10 \frac{5}{3}$; also the quotient of their sum divided by their difference.
24. A man bequeathed $\frac{7}{13}$ of his estate to his elder son, and the remainder to his younger son, who received $\$ 1345.50$ less than his brother. What was the estate worth?
25. If a tank, whose capacity is 420 gallons, is $\frac{5}{8}$ full, what part of it would be filled if $87 \frac{1}{2}$ gallons were added ?
26. A grocer bought 3 boxes of soap, each containing 75 pounds, at $6 \frac{1}{3}$ cents a pound, and kept it until it dried away in weight $\frac{1}{3}$, and then sold it at $9 \frac{2}{3}$ cents a pound. What did he gain or lose?

27 . If $\frac{4}{5}$ of 8 acres of land cost $\$ 1011 \frac{1}{3}$, what cost 4 times $1 \frac{1}{2}$ acres?
28. How many vessels, holding $\frac{3}{8}$ of a gallon, can be filled from $\frac{1}{4}$ of a barrel of $31 \frac{1}{2}$ gallons?
29. If $\frac{7}{8}$ of an acre of land cost $\$ 122 \frac{1}{2}$, what will $2 \frac{4}{5}$ acres cost?

Reduce to the simplest form:
30. $\left(\overline{2 \frac{3}{4}+2 \frac{1}{2}} \times \overline{7 \div 3 \frac{4}{5}}-1 \frac{2}{3} \div 2 \frac{1}{2}\right) \div 1 \frac{77}{228}$.

31. $\frac{3}{4}$ of $\frac{4 \frac{5}{9}}{6 \frac{1}{4}} \times \frac{6 \frac{8}{11}}{11 \frac{5}{8}} . |$| 32. $\frac{\frac{1}{9} \text { of } 1 \frac{1}{4} \times 4 \frac{1}{2}}{\frac{5}{66} \times 1 \frac{1}{3} \text { of } 3 \frac{1}{2}}-\frac{3 \frac{1}{4}+4 \frac{1}{3}}{6 \frac{1}{2}+1 \frac{1}{12}}$. |
| :--- | :--- |

DEIMALS:

INDUCTIVE EXERCISES.
193. 1. If a unit is divided into ten equal parts, what is one part called ? 3 parts? 6 parts?
2. What is the fractional unit of 3 tenths? Of $\frac{7}{10}$? Of any number of tenths?
3. If 1 tenth of 1 is divided into ten equal parts, what is one part called? 7 parts? 15 parts? 43 parts?
4. What is $\frac{1}{10}$ of $\frac{1}{10}$ of 1 ? $\frac{3}{10}$ of $\frac{1}{10}$ of 1 ? $\frac{7}{10}$ of $\frac{1}{10}$?
5. What is the fractional unit of $\%$ hundredths? Of 27 hundredths? Of $\frac{31}{100}$? Of any number of hundredths?
6. If 1 hundredth of 1 is divided into ten equal parts, what is one part called? 9 parts? 50 parts? 125 parts?
7. What is $\frac{1}{10}$ of $\frac{1}{10}$ of $\frac{1}{10}$ of 1 ? $\frac{3}{10}$ of $\frac{1}{100}$ of 1 ? $\frac{9}{10}$ of $1 \frac{1}{0} 0$ of 1 ?
8. What is the fractional unit of 9 thousandths? Of 47 thousandths? Of any number of thousandths?
9. What part of 1 is 1 tenth? What part of 1 tenth is 1 hundredth? How many hundredths in 1 tenth? How many tenths in $1 ?$

NOTATION AND NUMERATION.

194. A Decimal Fraction expresses one or more of the decimal divisions of a unit.

Thus, $\frac{1}{10}, \frac{3}{100}, \frac{4}{100}$, and $\frac{126}{10000}$, etc., are decimal fractions. Hence,

The denominator of a decimal fraction is either ten, or the product of two or more tens, the fractional units being tenths, lundredths, thousandths, etc.
195. Decimal fractions, commonly called Decimals, are usually expressed by writing the numerator only. Thus,

$\frac{5}{10}$	is written	5 ,	and is read	5 tenths.
$\frac{25}{100}$	6	. 25 ,	،	25 hundredths.
$\frac{125}{1000}$	،	.125,	"6 "	125 thousandths.
$\frac{7}{100}$	،	. 0%,	"6 ،	7 hundredths.
$\frac{18}{1080}$	،	.016,	، "6	16 thousandths.
$\frac{45}{10000}$	"	.0045,	6 6	45 ten-thousandths.
$\frac{245}{100000}$	"	.00245,	" ${ }^{\text {c }}$	245 hundred-thous'th

196. The Decimal Sign (.) or point determines, by its position, the denominator of the fraction, and, in a number composed of an integer and a decimal, it shows where the decimal part begins.

It will be seen in the above examples that there must be as many places in the decimal as there are ciphers in the denominator of the fraction; and that every decimal has for its denominator 1 , with as many ciphers annexed as there are places in the given decimal.

When the numerator does not contain as many places as there are ciphers in the denominator, prefix ciphers to the numerator until the number of places is equal to the number of ciphers in the denominator, and prefix the decimal-point. Thus, $\frac{5}{100}=.05 ; \frac{7}{1000}=.007$; $\frac{26}{10000}=.0026$; etc.

19\%. Express in decimal form, and read:

$\frac{9}{10}$	$\frac{125}{1000}$	$\frac{43}{1000}$	$\frac{215}{1000}$	$\frac{200}{1000}$
$\frac{4}{10}$	$\frac{8}{1000}$	1000	$\frac{324}{10000}$	$\frac{650}{10000}$
$\frac{12}{100}$	$\frac{17}{1000}$	$\frac{350}{1000}$	$\frac{1206}{10000}$	$\frac{324}{100000}$
$\frac{7}{100}$	$\frac{50}{100}$	$\frac{3}{100}$	$\frac{36}{}$	1000
			100000	

Express in the form of a fraction and read :

.8	.27	.105	.08	.4320
.06	.006	.0105	.060	.00415
.25	.450	.0035	.240	.00084
.025	.03	.0009	.1250	.0010
$.00 \%$.010	.0320	.0008	.00005

198. When an integer and a decimal are united, or written together, the expression is called a Mixed Number. (159.)

The word " and" is always read between the integer and the decimal. Thus, 9.25 is read, 9 and 25 hundredths; 12.045 is read, 12 and 45 thousandths.
199. The notation of decimals does not differ from that of integers. It is but the extension of the same system, and the application of the same principles in a descending scale. Hence, having learned the scale of integers, and observed the tenfold increase and decrease of its orders, the papil need only add $t h$ to the name of each order already known, to carry the descending scale to any point or order desired, since the same uniform law of value runs through the integral aud decimal parts of the expression ; that is, a unit of any order is ten times the value of a unit of the next lower order on the right, and one-tenth the value of the next higher order on the left.

Hereafter, the terms fraction and decimal will be used to distinguish the common from the decimal form of expression.

200．The relation of integral and decimal orders of the scale is clearly shown in the following

Table．					
Names．					
Orders．				垵运淢	
Units．	222	222	222.22	222	222

The number is read， 222 million 222 thousand 222，and 22 million 222 thousand 222 hundred－millionths．

201．Since the unit 1 is the basis of all numbers，integral and fractional，we make the order of units the starting－ point or centre of the system of notation and numeration of decimals，designating it by the decimal point（．），placed under，or at the right of it．

All integral orders on the left are multiples of this unit， and all decimal orders on the right are decimal parts of this unit，and the values of the units，equally distant from this fundamental unit，are reciprocals of each other．

Thus，the 2 d order on the left is 1 ten，and the 2 d order on the right is 1 tenth，and $\frac{1}{10}$ or 1 is the reciprocal of 10 ；the 3 d order on the left is 1 hundred，and the 3 d order on the right is 1 hundredth，and $\frac{1}{10 \sigma}$ or .01 is the reciprocal of 100 ，etc．

For convenience，the point is placed at the right of units instead of under it；so when the expression is a pure decimal，the point may be supposed to occupy units＇place．
202. Decimals, abstractly considered, express but one kind of unit, and that of the highest order given, the lower denominations being represented in decimals of the higher order.

Thus, in the expression .32465 , the point occupies the hundred's order of the thousandth's period; hence we know at once that 1 one hundred-thousand is the decimal unit, and that hundred-thousandths is the name of the decimal.

In writing decimals, as in writing integers, all vacant orders must be filled with ciphers. (19.)
203. Since the value of a figure in a decimal expression depends upon its position with reference to the decimal point, removing a figure one place to the left by removing the point one place to the right increases its value tenfold, or multiplies it by 10 ; removing it 2 places, multiplies it by 100 ; three places, by 1000 , etc.

Thus, $.007 \times 10=.07 ; .07 \times 10=.7 ; .7 \times 10=7$. Or, $.007 \times 1000=7$.
The number of decimal units remains the same, but their value is increased 10 times, by each removal one place to the left.
204. Conversely, removing a decimal figure one place to the right, by removing the point one place to the left, diminishes its value tenfold, or divides it by ten; removing it two places, divides it by 100 ; three places, by 1000 , etc.

Thus, $.5 \div 10=.05 ; .05 \div 10=.005 ; .005 \div 10=.0005$. Or, $.5 \div 1000$ $=.0005$.

The number of decimal units remains the same, but their value is made 10 times less by each removal one place to the right.
205. Annexing a cipher to a decimal multiplies both terms of the fraction by ten; and removing a cipher from the right divides both terms by ten. Neither operation affects the value of the decimal, since the place or distance of the significant figures, in relation to the fundamental unit, is not changed.
206. Principles. I. The laws of notation as applied to integers and to decimals are the same. Hence,
II. Ten units of any decimal order make one unit of the next higher order.
III. The value of any decimal order of units depends upon its position at the right of the decimal point. (199.)
IV. Each removal of a decimal order one place to the left increases its value ten-fold. (14, III.)
V. Each removal of a clecimal order one place to the right diminishes its value ten-fold. (14, IV.)
VI. Annexing or rejecting ciphers at the right of any decimal does not change its value.

Written Exercises.

20\%. Express as decimals:

1. Forty-five thousandths. $\frac{45}{1000}=.045$.
2. Thirty-four hundredths. Six thousandths. Three hundredths.
3. One hundred forty thousandths. Twelve ten-thousandths.
4. Eighty-two ten-thousandths. Ninety-six thousandths.
5. 84 ten-thousandths.
6. 2034 ten-millionths.
\%\%. 450 ten-thousandths.
7. 642 millionths.
8. 12406 ten-millionths.
9. 934 hundred-millionths.
10. 36 ten-thousandths.
11. 104 ten-millionths.

13. $\frac{105}{100}$.	$16.9 \frac{11}{1000^{2}}$	$19.327 \frac{9}{100}$.	$22.75 \frac{75}{10000^{\circ}}$

14. $\frac{4}{10} 0800$.
15. $\frac{1}{100033} 0000$.
$1 \% .57 \frac{16}{10000}$.
16. $1240{ }_{1} \frac{27}{0} \frac{7}{0} \overline{0}$.
17. $120 \frac{156}{1000}$.
18. Six hundred ten thousand and 249 millionths.
19. Ten million 5 hundred thousand and 105 hundredthousandths.

2\%. Eighty thousand 142 and 13601 millionths.

Rules for Decimals.

I. To write a decimal.

Write the numerator of the decimal as an integral number, filling the vacant places, if any, with ciphers, and place the decimal point before tentlhs.
II. To read a decimal.

Read the decimal as if an integral number, and give it the name of the right-hand order.

Express in decimal form the following:
28. Three hundred twenty and five hundred seven tenthousandths.
29. Two million 25 thousand and 631 ten-millionths.
30. Seven thousand and 3204 hundred-thousandths.

Copy and read the following:
31. . 1272.
32. . 00425.
33. . 60300 .
34. . 000572.
35. . $00400 \% 1$.

36.	7.032.	41.	.000384.
3%.	29.103%.	42.	.7062005.
38.	40.00036.	43.	96.00300%.
39.	2.20075.	44.	8.03140.
40.	16.00009.	45.	247.8640.

208. Currency is a term applied to coin, notes, bills of exchange, or to any substitute for money, employed in trade and commerce.
209. United States Money is the legal currency of the United States, and as its denominations increase by the decimal scale, it is a Decimal Currency.

It is sometimes called Federal Money because issued by the Federal Government.
210. The denominations and scale of United States Money are shown in the following

Table.
10 Mills (m.) $=1$ Cent. c. or ct.
10 Cents $=1$ Dime. d.
10 Dimes = 1 Dollar. \$
10 Dollars $=1$ Eagle. E.
$\$ 1=10 \mathrm{~d} .=100 \mathrm{ct} .=1000 \mathrm{~m}$.

In business operations eagles are regarded as tens of dollars, and dimes, as tens of cents. Thus, 5 eagles is written as $\$ 50$, and 5 dimes, as 50 cents.
211. Since the dollar is the unit of United States Money, dollars are written as integers, with the sign (\$) prefixed; and the lower denominations are written as decimals-that is, as tenths, hundredths, and thousandths of the dollar.

Thus, 12 dollars 4 dimes 6 cents 7 mills is written $\$ 12.46 \%$. Hence, dimes are tenths of a dollar; cents are tenths of a dime, or hundredths of a dollar; and mills are tenths of a cent, or hundredths of a dime, or thousandtñs of a dollar.
212. In business transactions, cents are often written as fractions of a dollar ; and the half-cent either as a fraction ($\frac{1}{2}$), or as 5 mills.

Thus, $\$ 7.42$ may be written $\$ 7 \frac{4}{100} ; 44 \frac{1}{2}$ cents, $\$.44 \frac{1}{2}$, or $\$.445$.
Generally, in business calculations, if in the final result the mills are less than 5 they are not regarded; if 5 or more than 5 , they are considered a cent. Thus, $\$ 9.234$ would be called $\$ 9.23$, and $\$ 9.236$ would be called $\$ 9.24$. This usage will be adopted in the answers to examples in this book.
213. Principle.-The system of notation, and all the operations in decimal currency, are the same as corresponding operations in integers and decimals.

REDUCTION OF DECIMALS.

INDUCTIVE EXERCISES.

214. 215. How many tenths in 2 units? In 3? 4? 5? 2. How many hundredths in 1 unit? In 2? 5? 6?
1. How many tenths in 50 hundredths? In 60?
2. How many hundredths in 3 tenths? In 4 tenths?
3. In 1 dollar how many tenths of a dollar? How many hundredths? How many thousandths?
4. In 2 dollars how many dimes? How many cents?
5. How many thousandths in 2 units? In .2? In .25?
6. In 40 hundredths how many tenths? Thousandths?
7. In 40 cents how many dimes? How many mills?
8. In 5000 mills how many cents? Dimes? Dollars?
9. How many thousandths of a dollar are 7 mills? Are 8 cents? 45 cts. 8 mills? $12 \frac{1}{2}$ cts.? $37 \frac{1}{2}$ cts.?
10. What decimal part of a dollar is \% cents? 2% cents?
11. Express as cents $\$ 4 ; \$ 5.36 ; \$ 14.25 ; \$ 10.20$.
12. Express as mills 35 cts.; $37 \frac{1}{2}$ cts.; 75 cts. ; $87 \frac{1}{2}$ cts.
13. How are dollars changed to cents? Cents to mills? Dollars to mills ?
14. How are mills changed to cents? Cents to dollars?
15. In .900 how many hundredths? How many tenths?
16. How are thousandths changed to hundredths? Hundredths to tenths? Tenths to units?
17. How are units changed to tenths? Tenths to hundredths? Hundredths to thousandths?
18. How is any integer or decimal changed to higher orders of units? To lower orders? (206, IV, V.)
19. Change .6 to hundredths. To thousandths.
20. Change . 4 and .03 to thousandths. . 05 and .012.
21. Change .2, . 03 , and .025 to equivalent decimals having a common denominator of 1000 ; of 10000 .
22. Reduce .8, .25̃0, and .400 to equivalent fractions having the least common denominator.
23. How are decimals reduced to a common denominator? State the principle. (206, VI.)
24. Express .5 as a fraction in halves; . 25 in fourths.

2\%. How many halves in $\frac{50}{100}$? In $\frac{500}{1000}$?
28. In .50 how many halves? Fourths? Tenths?
29. Express as a fraction in its lowest terms .20; .8;.40.
30. How is a decimal changed to the form of a fraction ?
31. How many tenths in 1? In $\frac{1}{2}$ of 1 , or $\frac{1}{2}$?
32. How many hundredths in 1 ? In $\frac{1}{2}$? In $\frac{1}{4}$? In $\frac{3}{4}$?
33. How many cents in $\$ \frac{1}{2}$? In $\$_{4}^{1}$? In $\$ \frac{3}{4}$?
34. How many tenths in $\frac{1}{8}$? In $\frac{3}{5}$? In $\frac{4}{3}$?
35. Express $\frac{7}{10}$ decimally $; \frac{4}{8} ; \frac{1}{4}$ as hundredths ; $\frac{3}{4} ; \frac{7}{20}$.
36. In $\frac{8}{5}$ how many tenths? Hundredths?
3%. Change to the form of a decimal $\frac{1}{2} ; \frac{4}{8} ; \frac{1}{4} ; \frac{1}{8} ; \frac{3}{4}$.
38. How is a fraction changed to the form of a decimal ?

WRITTEN EXERCISES.

215. 216. Change $\$ 5 \% 5$ to cents; $\$ 84.62$ to cents. (41, 4.)
1. Change 2684 cents to dollars; 682 ã0 mills to dollars.
2. Change $\$ 4.875$ to mills; $\$.926$ to mills.
3. Change 842 cents to dollars; 785 mills to cents.
4. Change 30256 mills to dollars; 65 cents to mills.
5. Reduce 3.5 , .225, and 4.0015 to equivalent decimals having a common denominator.
6. Reduce 4 tenths, 28 ten-thousandths, and 156 hundred. thousandths to their least common denominator.

Reduce to the least common denominator:
8. 42.04, 125.126, .0036, .108, and 5.00306.
9. .60034, 325.06, 4.00074, .0861, and 25.8.

The Inductive Exercises and the principles taught, are sufficiend to enable the pupil to frame all rules necessary for the Written Exer cises in decimals.
10. Change . 625 to an equivalent fraction.

Operation.- $625=\frac{625}{1000}=\frac{5}{8}$.
Change to equivalent fractions in their lowest terms :

11. .04.	15. .48.	19. .068.	$23 . .0065$.	$27 . .00032$,
12. .12.	16. .64.	20. $\$.375$.	$24 . .9375$.	$28 . .59375$.
13. .80.	$1 \% .35$.	$21 . \$.875$.	$25 . .3125$.	$29 . .00060$.
14. .45.	18. .125.	$22 . \$.18 \% 5$.	$26 . .00 \% 4$.	$30 . .6875$.

31. Change $.16 \frac{2}{3}$ to an equivalent fraction.

Operation- $-16 \frac{2}{3}=\frac{16 \frac{2}{3}}{100}=\frac{\frac{50}{3}}{100}=\frac{50}{300}=\frac{1}{6}$.
Change to iractions in their lowest terms:
32. \$.061 $\left.{ }^{\frac{1}{4} ; ~ \$.33 \frac{1}{3} .} \right\rvert\,$ 35. \$.621 $; ~ .312 \frac{1}{2} . \left\lvert\, 38 . ~ .0008 \frac{1}{4}\right.$.
33. $\$.08 \frac{1}{3} ; \$.3 \% \frac{1}{2}$. 36. $\$.18 \frac{3}{4} ; ~ .833 \frac{1}{3}$. 39. . $1666 \frac{2}{3}$.
34. $\$.12 \frac{1}{2}$; $\$.31 \frac{1}{4}$. $37 . \$.87 \frac{1}{2}$; . $007 \frac{3}{4}$. 40. . $1428 \frac{4}{7}$.
41. Express by an integer and a fraction $\$ 14.12 \frac{1}{2}$.

Operation.- $\$ 14.12 \frac{1}{2}=\$ 14_{20}^{250}=\$ 14 \frac{1}{8}$.
In like manner express :
42. 15.7\%5.
43. $\$ 8 \% .444 \frac{4}{9}$.
44. $150.37 \frac{1}{2} ; 9.007 \frac{3}{4}$. 45. 705.41年; 26.05 $\frac{3}{9}$.
46. $\$ 125.00 \frac{4}{3}$. 47. $\$ 8.083 \frac{1}{3}$.
216. 1. Change $\frac{3}{8}$ to an equivalent decimal.
operation.
$\frac{3}{8}=\frac{3000}{8000}=\frac{375}{1000}=.375$. Or, $\frac{3}{8}=\frac{3.000}{8}=.375$.
Reduce to equivalent decimals:

2. $\frac{5}{8} ; \frac{7}{8}$.	5. $\frac{2}{23} ; \frac{14}{20}$.	8. $\frac{21}{32}$; ${ }^{\frac{3}{5} 50}$.	11. $\frac{91}{1280} ; \frac{26}{812}$
3. $\frac{1}{16} ; \frac{3}{16}$.	6. $\frac{11}{16} ; \frac{3}{40}$.	9. $\frac{97}{128} ; \frac{201}{625}$.	12.
4. $\frac{1}{40} ; \frac{5}{80}$.	\%. $\frac{14}{25} ; \frac{15}{16}$.	10. $\frac{4}{127} 9 ; \frac{27}{80}$	13. $\frac{18083}{2000}$;

21\%. When the numerator, with ciphers annexed, is exactly divisible by the denominator, the result is called a Perfect Decimal. Thus, $25, .375$ are perfect decimals.
218. When the denominator of a fraction in its lowest terms contains any other prime factor than 2 or 5 , the division of the numerator by the denominator cannot be exact, and the result is called a Circulating Decimal ; and the figure or set of figures repeated is called the Repetend.

Thus, $.333+$ and .4545 + are circulating decimals, and the repeating figures, 3 and 45, are the repetends.
219. A repetend is usually written but once, and a point (.) is placed over the single figure, or the first and last of the set of figures.

Thus, $.66+$ and $.216+$ are written,.$\dot{6}$ and.$\dot{2} 1 \dot{6}$.
220. A Pure Circulating Decimal contains no figures besides the repetend ; as,.$\dot{5}$, $\dot{1} 2 \dot{5}$, $.106^{\prime}$, etc.
221. A Mixed Circulating Decimal contains other figures before the repetend, called the finite part of the decimal ; as, $.2 \dot{2} \dot{\%}, .04 \dot{8}, .18 \dot{2} 4 \dot{3}$, etc.

Change

1. To perfect decimals: $\frac{8}{25} ; \frac{15}{128} ; \frac{11}{125} ; \frac{3}{125}$ of $2 \frac{3}{4} ;$ 万7 2 .
2. To pure circulating decimals: $\frac{2}{3} ; \frac{4}{9} ; \frac{11}{37} ; \frac{39}{41} ; \frac{65}{101} ; \frac{178}{3} \frac{8}{3}$.
3. To mixed circulating decimals: $\frac{5}{6} ; \frac{7}{15} ; \frac{5}{36} ; \frac{34}{78} ; \frac{59}{330}$.
4. Reducing $\frac{1}{9}$ to a decimal, the result is $.111+$, or.i; and since.$\dot{1}$ is the decimal equivalent for $\frac{1}{9}, . \dot{2}$ must be the equivalent for $\frac{2}{9} ; . \dot{3}$, for $\frac{3}{3}$; and so on to.$\dot{9}$, equal to $\frac{9}{9}$, or 1 .

Again, $\frac{1}{99}$ reduced to a decimal is $.0101+$, or .01 ; and since $\frac{1}{99}=. \dot{0} \dot{1}, \frac{2}{99}=. \dot{0} \dot{2} ; \frac{3}{99}=. \dot{0} \dot{3}$, etc. $; \frac{1}{99}=.001001+$, or $.0 \dot{0} \dot{i}$; and $\frac{{ }_{9}^{2}}{95}=. \dot{0} 0 \dot{2} ; ~ \frac{145}{9} 95=. \dot{1} 4 \dot{5}$, etc. Hence,

A repetend is changed to a fraction by writing for a denominator as many nines as there are figures in the repetend. Thus, $. \dot{3}=\frac{3}{8} ; . \dot{2} \dot{y}=\frac{27}{9} ; .4 \dot{0} \dot{9}=.4 \frac{9}{9}=4 \frac{1}{11}$.

1. Change . $\dot{3} 3 \dot{1}$ to the form of operation. a fraction.

$$
. \dot{2} 3 i=\frac{231}{99}=\frac{77}{333} .
$$

In like manner change to the form of fractions:

2. . $\dot{3} ;$. ${ }^{\text {\% }}$	4. . $\dot{3} \mathrm{i}$; . $\dot{4} \dot{5}$.	6. . 045 ; . $\%$ 2̇.	8. . 4158.
3. . $\dot{0} \dot{3}$; . $\dot{2} \dot{\%} \dot{\%}$	5. . $\dot{6} \dot{6} ; ~ . \dot{0} 1$.	\%. .97\% ; . ${ }^{\text {a }}$	9. .9̇ธี12

10. Change .138 to the form of a fraction.
operation.

$$
.13 \dot{8}=.13 \frac{8}{9}=\frac{13 \frac{8}{9}}{100}=\frac{125}{900}=\frac{5}{36} .
$$

11. Change $4.3 \dot{2} \dot{8}$ to a mixed number.

$$
.3 \dot{2} \dot{8}=.3 \frac{8}{9} \frac{\text { Operation }}{9}=\frac{3 \frac{28}{9}}{10}=\frac{325}{090}=\frac{C 5}{198} .
$$

$$
\text { Hence, } 4.3 \dot{2} \dot{8}=4_{1} \frac{65}{95} .
$$

Change to fractions and mixed numbers :

12. $.0 \dot{7} ; .5 \% \dot{\text { 2 }}$.	15. 2.08i.	18. 3.0 ¢ ${ }^{\text {c }}$.	21. .022̇\%
13. . 083 ; 5.2%.	16. .59่25.	19. 7.1893.	22. .35135்.
14. . $30 \dot{\square}$; 4.3\%.	1\%. $3.45 \dot{6}$.	20. .00185.	23. . $011 \dot{3} \dot{6}$.

ADDITION AND SUBTRACTION OF DECIMALS.

Inductive Exercises.
223. 1. What is the sum of 5 tenths and 4 tenths? Of $\frac{3}{10}$ and $\frac{5}{10}$? Of . 4 and .7 ? Of $.6, .5$, and .2 ?
2. What is the difference between $\frac{9}{10}$ and $\frac{3}{10}$? .7 and .4? $\frac{25}{100}$ and $\frac{15}{100}$? . 18 and .12 ? . 36 and .05 ?
3. Read . 56 in tenths and hundredths. Read .325 in tenths, luundredths, and thousandths.
4. What is the sum of $\frac{15}{100}$ and $\frac{9}{100}$? Of .07 and .28 ? .3, .05, and . 24 ?
5. What is the sum of 23 tenths and '\% tenths? The difference? What is the sum of 36 hundredtlis and 2 tenths? The difference?
6. How many tenths and hundreaths in .7 less .55 ?
\%. What is the sum of $\frac{1}{10}, \frac{3}{100}$, and $\frac{{ }^{5}}{10^{5} 00}$? Of $.2, .05$, and .012?
8. What is the sum of 5 and $\frac{1}{2}$, expressed decimally? Of 9 and $\frac{1}{4}$? Of 6 and $\frac{3}{4}$?
9. What is the difference between 3 and $\frac{1}{4}$, expressed decimally? Between 26 cts. and 12 cts.? $\$.44$ and $\$.30$?
10. What is the sum of $\$ 2, \$.12$, and $\$.005$? Of 50 cents and $\$.25$?
11. What is the sum of .3 and .045 ? The difference between . 43 and .3 ?
12. How many decimal places in the sum of tenths and hundredths? Of hundredths and thousandths? Of tenths and thousandths? Of hundredths and ten-thousandths?
13. How many places in the difference between tenths and hundredths? Between tenths and thousandths? Botween thousandths and ten-thousandths ?

Find the sum and difference of
14. 4 dollars and .5 of a dollar.
15. . $\% 5$ of a ton and .3 of a ton.
16. .9 of a gallon and $\frac{1}{2}$ of a gallon.
17. $3 \frac{1}{4}$ yards and .25 of a yard.

| 18. $.0 \%$ of a foot and 14 feet. | 20. 23 |
| :--- | :--- | :--- | days and .6 of a day. 19. 10 rods and 5.6 rods. $\quad 21$. $\$.75$ and $\frac{1}{2}$ of $\$.8$.

224. Principle. Only decimals of like orders, express. ing parts of like units, can be added or subtracted.

WRITtEN EXERCISES.

225. 226. Find the sum of $18 . \%$ 2. From $\% .43$ subtract .3027, 136.415, and . 08 .

OPERATION.

18.7	Or,	18.7000
.3027	$.302 \%$	
136.415	136.4150	
.08	.0800	
155.497%		155.497%

. 6214.
operatton.

7.43	Or, 7.4300
.6214	
6.8086	$\frac{.6214}{6.8086}$

Explanation. The arrangement of the given numbers must be such that the decimal points shall stand in the same vertical line.

Then, since decimals are written upon the same scale as integers, they are added and subtracted in the same manner, and the proofs are the same.

The number of decimal places in the answer will be the same as in that one of the given numbers which contains the greatest number of places.

Find the sum
3. Of $7.36,1.24, .0346,5.00164, .570036$, and 14.09 .
4. Of $\$ 24.035, \$ 150.10, \$.965$, $\$ 3.50$, and $\$ 225$.
5. Of $48.7 \frac{3}{4}, 5.384 \frac{1}{8}, .4726 \frac{3}{6}, 124.56 \frac{7}{3} 5$, and $17.0 \frac{7}{8}$.
6. Find the sum of 46 hundred, 46 tens, and 46 tenths.
7. From ${ }^{7} 15$ and 45 hundredths subtract 715 hundredths.
8. Find the sum of 900 dollars, 800 cts., and 500 mills:
9. From 82% thousandths subtract 32468 ten-millionths.
10. Find the sum of 250 dollars 24 cts. 6 mills, 28 dollars 10 cts., 5 dollars 8 cts. 5 mills, and 62 cts.
11. A man sold a house for $\$ 9840.50$, which was $\$ 5423$ more than it cost him. What did it cost him?
12. A lady bought a shawl for $\$ 35 \frac{1}{2}$, a bonnet for $\$ 9.37 \frac{1}{2}$, silk for a dress for $\$ 42.75$, and a pair of gloves for 1 dollar and a half, and gave in payment a $\$ 100$ bill. How much change ought she to receive?

Find the sum, and the difference, expressed decimally, of
13. 32.0624 and \%.34.
14. 175.85 and 16.00156 .
15. 4.0602 and .000314.
16. 984.721 and 1500.008 .

1\%. 400 tons and 108.75 tons.
18. 25.025 rods and $120 \frac{4}{5}$ rods.
19. $\$ 18 \% .87 \frac{1}{2}$ and $\$ 50.125$.
20. $\$ 256 \frac{7}{8}$ and $\$ 26.37 \frac{1}{2}$.
21. $\$ 300$ and $\$ 35 \frac{15}{16}$.
22. 225 and 225 hundredths.
23. $\$ 1200$ and $\$ 500 \frac{7}{8}$.
24. 84 and 84 tenths.
25. 10 and 6 millionths.
26. $25 \frac{5}{8}$ and $.02 \frac{7}{2} 5$.

2\%. $\$ 5 \frac{14}{20}$ and $\$.5 \%$.
28. $.6 \frac{1}{18}$ and $.06 \frac{5}{9}$.
29. $1 \frac{1}{2}$ and 45 tenths.
30. $\$.625$ and $\$ \frac{3}{8}$.
31. $\$ 27 \frac{7}{8}$ and $\$ 40$.
32. . 8 and $.08 \frac{2}{3}$.
33. If a barrel of flour cost $\$ 10 \frac{7}{8}$, a ton of coal $\$ 6_{15}^{5}$, a ton of hay $\$ 19 \frac{4}{5}$, and a barrel of sugar $\$ 21.3 \% \frac{1}{2}$, what is the cost of all?

Find the value of
34. $200+.02-1.0002 . \quad 37 . \$ 750-\left(\$ 476.06 \frac{1}{4}-\$ 87 \frac{7}{25}\right)$.
35. $\$ 75.10-\left(\$.05+\$ 25_{19}^{90}\right)$.
36. $4 \frac{17}{100}-.9-\left(.25+\frac{14}{2}\right)$. 39 . $\$ \frac{7}{8}+\$ 1.18 \frac{3}{4}-\frac{81 \frac{31}{100}}{}$.

MULTIPLICATION AND DIVISION OF DECIMALS.

INDUCTIVE ExERCises.

226. 227. What is 4 times $\frac{1}{10}$? 2 times 4 ? $2 \times .4$?
1. What is $\frac{1}{2}$ of 6 tenths? $\frac{1}{4}$ of $\frac{8}{10}$? $\frac{1}{3}$ of .9 ? . $6 \div 3$? . $8 \div 4$?
2. What is $\frac{1}{5}$ of .25 hundredths? $\frac{1}{6}$ of $\frac{30}{100}$? $\frac{1}{8}$ of .40 ?
3. What is 6 times $\frac{8}{100}$? 5 times $\frac{9}{1000}$? $.06 \times 4$? . 008×5 ?
4. What is $\frac{1}{10}$ of 60 thousandths? $\frac{1}{5}$ of .025 ? . $064 \div 8$?
5. What is $\frac{4}{10} \times 3$? $6 \times .4$? $.8 \times 7$? $12 \times .5 ? .9 \times 9$?
\%. What is $\frac{3}{10} \times \frac{4}{10}$? $.5 \times .6$? . $7 \times .4$? $.9 \times .6$? . $5 \times .11$?
6. What is $\frac{5}{10} \times \frac{6}{100}$? . 04×5 ? $\frac{7}{100} \times \frac{6}{100}$? . $06 \times .08$?
7. Divide .36 by $6 ; .48$ by $8 ; .63$ by $9 ; .84$ by 12 .
8. What is $\frac{9}{10} \times 3$? $\frac{9}{10} \times \frac{3}{10}$? . $9 \times .4$? $\frac{15}{100} \times 3$?
9. What is 9 times $\$.4$? 6 times $\$.09$? $\$.12 \times 7$?
10. Divide .9 by $3 ; .84$ by $7 ; .096$ by $12 ; .040$ by 8 .
11. What is $.8 \times .9$? . $72 \div 8$? . $72 \div 9$? . $96 \div 12$?
12. The product of two factors is .120 , one of which is .8 ; what is the other? If one is .06 , what is the other?
13. Divide 5.6 by 8 .

Operation. 5.6 equals 56 tenths, and $\frac{1}{8}$ of 56 tenths is 7 tenths, or .7
16. What is $\frac{1}{4}$ of $\$ 3.2$? $\frac{1}{6}$ of $\$.66$? $\$.063$ divided by 9 ?
17. Multiply 3 by $5 ; .3$ by $5 ; .03$ by $.5 ; .003$ by .05 .
18. Divide .45 by $5 ; .45$ by $.5 ; .45$ by $.05 ; .045$ by .005.
19. The product of two factors is .0064 , one of which is .08; what is the other?
20. How much is .12 of a ton multiplied by . $\%$?
21. What is .125 of a ton divided by .5 ? $\$.75 \div .25$?
22. How many decimal places in the product of any two decimals?
23. Of what two factors is the dividend the product?
24. Then how many places must the dividend contain?
25. What is the product of units by tenths? Of tenths by tenths? Hundredths by tenths? Hundredths by hundredths? etc.
26. What is the quotient of tenths divided by units? Of units by tenths? Hundredths by tenths? Hundredths by hundredths? Thousandths by tenths? etc.
2%. How many decimal places in the product, if one of the factors contain two places, and the other one? If there are three places in one factor, and two in the other?
28. How many decimal places in the quotient, if there are three in the dividend and one in the divisor? If two in the divisor and two in the dividend? If none in the divisor and four in the dividend? If two in the divisor and none in the dividend?

22\%. Principles. 1st. For Multiplication.
I. The number of decimal places in the product of two decimals is equal to the number of decimal places in both factors.
2d. For Division.
II. The number of decimal places in the quotient is equal to the excess of the number in the dividend over that in the divisor. Hence,
III. If the number of decimal places in the dividend is the same as in the divisor, the quotient will be an integer.

The number of decimal places in the dividend must first be made at least equal to those in the divisor before division is possible.

Written Exercises.

228. The operations and proofs of Multiplication and Divisıon of Decimals are the same as of Integers, with the exception of locating the decimal point.
229. What is the product of 8.25 by .9 ?

Oferation. -1 st. As in fractions: $8.25 \times .9=\frac{355}{105} \times \frac{9}{10}=\frac{7485}{1050}=$ 7.425. (181, Rule II.)

2d. As in integers : $8.25 \times .9=7.425$. ($227, \mathrm{I}$.)
2. Multiply 035 by 06 . operation.

Since hundredths into thousandths produces hundred. 035 thousandths, the product requires 5 decimal places. Hence, 2 ciphers must be prefixed.
3. What is the quotient of .215 divided by .5 ?

Operation.-1st. As in fractions: $.215 \div .5=\frac{215}{1000} \div \frac{5}{10}=\frac{215}{1000}$ $\times{ }^{10}=\frac{43}{100}=.43 . \quad(\mathbf{1 8 3}$, II.)

2d. As in integers: . 215 divided by $.5=.43$. (227, II.)
4. Divide 1.025 by 25.
operation.
Since the dividend contains 3 decimal places and the 25 $\lcm{1.025}$ divisor none, the quotient must have 3 decimal places. (227, II.)

5. Divide 3 by . 25.

First make the decimal places in the dividend equal to operation. those in the divisor, then the quotient will be an integer .25)3.00 (2゙27, III.)

If there is a remainder the division may be continued, 12 each cipher annexed being a decimal of the dividend.

If the quotient is carried to three or four places, it is sufficiently exact for most business transactions.

Multiply
6. . 4 by 400 .
\%. 125 by .65 .
8. 3.26 by . 019 .
9. $\$ 1 \% .4$ by 2.3 .
10. 6.4 by $.0 \% 5$.
11. . 006 by .08 .
12. 98.21 by 1.515 .
13. 5.0204 by 40.2.
14. 3.0701 by 70.01 .
15. $\$ 146.75$ by 2.04 .
16. $\$ 150.7$ by $\frac{1}{2}$ of 2.5 .

1\%. 96 tenths by $.12 \frac{1}{2}$.
18. 5.85 by 9 .
19. 1.44 by 18 .
20. . 096 by 32 .
21. 23.4 by . 009 .
22. 45.3 by 302 .
23. $\$ 63.36$ by . 132 .
24. Multiply 21.65 by $.042 ; 9.325$ by $2.6 ; \$ 14.75$ by 15 .
25. Multiply $\$ 276 \frac{1}{2}$ by .085 ; . 20 by 3.02 .
26. Divide 196.2 by $.6 ; .32$ by $.6 ; 19.6$ by $.06 ; \$ 46.95$ by . 125.
27. Divide . 1728 by .0144 ; 49000 by .007 ; $\$ 35.91$ by \$. 285.
28. Find the product of 9000 by 9 thousandths.
29. Find the quotient of $16.5 \% 8$ divided by 5.4 ; by .54 ; by .054 .
30. Multiply 4 millionths by 6 hundredths.
31. Multiply $\$ 84 \frac{3}{4}$ by $.25 ; 64$ tenths by $.031 \frac{1}{4} ; \$ \$ \frac{7}{8}$ by $2 \frac{2}{5}$.
32. Divide 2 and 22 hundredths by 74 ten-thousandths.
33. Divide .00005 by 2.5 ; by .25 ; by .0000025.
34. Divide 72.36 by 36 ; by .0035 ; . 003 by 1.6.
35. Divide 456 thousandths by 6 hundredths; by 12 ten-thousandths.
a. To multiply a decimal by $10,100,1000$, etc., move the decimal point as many places to the right as there are ciphers in the multiplier. (203.)
b. To divide a decimal by $10,100,1000$, etc., move the decimal point as many places to the left as there are ciphers in the divisor. (204.)

Find the valuc of
36. $4.65 \times .025 \times .08$.

3\%. $7.6 \times .045 \times 13 \times .0002$.
38. $6.45 \times 100 \times \frac{3}{4}$ of $.8 \times 10$.
39. $27 \frac{9}{25} \times 1000 \times .009 \frac{3}{8}$.
40. $\$ 320 \frac{3}{16} \times 10 \times 2 \frac{7}{10} \times 100$.
41. $(13 \% .05 \div 100) \times .0 \frac{3}{4}$.
42. $(\$ 425 \times .006) \div 1000$,
43. $(7.6875 \div 187.5) \times 5 \frac{1}{8}$.
44. $(\$ 61.376 \div \$ 2.74) \times 10$.
45. $(11.7 \div 1300) \times \frac{1}{3}$ of $.02 \%$.
46. If $\$ 1$ in gold is worth $\$ 1.0 \% \frac{1}{8}$ in paper currency, what are $\$ 1000$ in gold worth? $\$ 100$? $\$ 10000$? $\$ 1500$?
47. What is the cost of 246.04 acres of land, at $\$ 25.50$ an acre? At $\$ 3 \% \frac{1}{2}$ an acre? At $\$ 55 \frac{5}{8}$? At $\$ 100$?
48. How many lots, each containing $.87 \frac{1}{2}$ of an acre, can be made from $12 \frac{1}{4}$ acres? From 19.20 acres ?
49. Bought 20 pounds of sugar, at $11 \frac{3}{4}$ cts., 25 pounds of coffee, at $28 \frac{1}{2}$ cts., and 15 pounds of tea, at $\$.8^{7} \frac{1}{2}$ a pound. What was the cost of all ?

What is the cost of
50. \% sheep, at $\$ \% .62 \frac{1}{2}$ a head? At $\$ 6 \frac{3}{4}$?
51. $136 \frac{1}{2}$ barrels of flour, at $\$ 9 \frac{1}{8}$ a barrel ? At $\$ 8.12 \frac{1}{2}$?
52. $327 \frac{1}{4}$ pounds of sugar, at $10 \frac{1}{2}$ cents a pound? At $8 \frac{3}{4} \mathrm{cts}$. ?
53. $233 \frac{5}{8}$ tons of coal, at $\$ 6.37 \frac{1}{2}$ a ton? At $\$ 5 \frac{7}{8}$?
54. 100 cords of wood, at $\$ 3.8 \% \frac{1}{2}$ a cord ? At $\frac{1}{2}$ of $\$ 6 \frac{3}{4}$?
55. 1000 barrels of apples, at $\$ 2 \frac{7}{8}$ a barrel ? At $\$ 3.10$?
56. $105 \frac{1}{2}$ yards of cloth, at $\$ 4 \frac{4}{5}$ a yard ?

5\%. 5000 bushels of wheat, at $\$ 1 \frac{7}{8}$ a bushel? At $\$ 1.37 \frac{1}{2}$?
58. . 625 of an acre of land, at $\$ 100$ an acre?
59. $\frac{5}{8}$ of 456 bushels of oats, at $\$.62 \frac{1}{2}$ a bushel?
60. $\frac{3}{3}$ of $32 \% .6$ acres of land, at $\frac{?}{\hbar}$ of $\$ 124$ an acre?

What is the price of cach,
61. If 894 pounds of sugar cost $\$ 80.46$? If $\$ 58.11$?
62. If 64 bushels of wheat cost $\$ 136$? If $\$ 88$?
63. If 100 acres of land cost $\$ 3325.50$? If $\$ 2675$?
64. If 2.7 tons of hay cost $\$ 32 \frac{2}{5}$? If $\$ 33 \frac{3}{4}$?
65. If $352 \frac{1}{2}$ pounds of coffee cost $\$ 66.09 \frac{3}{8}$?
66. If $842 \frac{3}{4}$ tons of railroad iron cost $\$ 55992.31$?

67 . If $25 \frac{1}{8}$ yards of cloth cost $\$ 37.68 \frac{3}{4}$? If $\$ 72.36$?
68. What is the cost of $5 \frac{7}{8}$ bales of sheeting, each bale containing $41 \frac{3}{4}$ yards, at $12 \frac{1}{2}$ cents a yard? At $16 \frac{2}{3}$ cents?
69. If $10 \frac{1}{2}$ barrels of apples cost $\$ 22.75$, what will $40 \frac{1}{4}$ barrels cost?
70. If $\frac{1}{4}$ of one hundred pounds of coffee cost $\$ 7.81 \frac{1}{4}$, how many pounds can be bought for $\$ 20$? For $\$ 100$?
71. How many tons of coal, at $\$ 7 \frac{13}{16}$ a ton, will pay for $6 \frac{1}{2}$ barrels of flour, at $\$ 8 \frac{3}{4}$ a barrel ? At $\$ 9 \frac{1}{2}$?
72. Three men bought a piece of land containing 645 acres, and divided it so that the first had $\frac{3}{16}$, the second had $.3 \% 5$, and the third, the remainder. How much did the third receive?
73. If $\frac{1}{2}$ of .5 of a barrel of sugar is worth $\$ 5 \frac{1}{2}$, what is $\frac{3}{4}$ of .125 of a barrel worth? $\frac{7}{10}$ of $.62 \frac{1}{2}$ of a barrel ?
74. A man bought at one time $826 \frac{1}{2}$ bushels of wheat, at $\$ 1 \frac{3}{4}$ a bushel, and at another time $281 \frac{1}{2}$ bushels at $\$ 1.87 \frac{1}{2}$ a bushel ; then sold the whole at a profit of $\$ 398.01$. . At what price did he sell it?
\%\%. A farmer sold a merchant $25 \frac{3}{4}$ cords of wood, at $\$ 3 \frac{1}{2}$ a cord, and received in payment 4 barrels of flour, at $\$ 8 \frac{3}{8}$ a barrel ; 1 barrel of sugar, containing 204 pounds, at $12 \frac{1}{2}$ cents a pound; some dry goods, worth $\$ 17.32 \frac{1}{2}$; and the balance in coffee, at 30 cents a pound. How many pounds of coffee did he receive?
76. $(.025075 \div 1.003)+\left(\overline{12.6 \div .0012} \times \frac{1}{8}\right)-1000 \frac{7}{8}=$?
7\%. $\left(\$ 3250 \times 2 \frac{4}{3} \div \$ 56 \frac{7}{8}-883.12 \frac{1}{2} \div 8.875\right) \div 1000=$?
229. To find the cost, when the thing or quantity is sold by the 100 or 1000.

1. What is the cost of 360 oak posts, at $\$ 8.75$ per hundred?

Explanation-Multiplying the price of one hundred posts by the number of posts, gives a product 100 times too large; $\frac{100}{100}=\$ 31.50$. hence, the product must be divided by 100. (104.) Had the price been by the thousand, then the product should be divided by 1000 . Hence,

The product of the quantity by the price, divided by 100 or 1000 , as the case may require, equals the cost.

The letter C is sometimes used for hundred and M for thousand.
2. What is the cost of $16 \% 2$ feet of boards, at $\$ 1.75$ per C.?
3. What will be the freight on 675 pounds of merchandise, at $\$.62 \frac{1}{2}$ per C.? At $\$ 2.40$ per M. ?
4. What will be the cost of 40000 laths, at $\$.28$ per C., and $15 \% 0$ feet of boards, at $\$ 18 . \% 5$ per M.?

Find the cost of
5. 948 pounds of beef, at $\$ 12 \frac{1}{2}$ per hundred. At $\$ 10 \frac{3}{8}$.
6. 1368 feet of square timber, at $\$ 28$ per M. At $\$ 26.50$.
\%. 5680 cedar rails, at $\$ 6 \frac{1}{4}$ per 100. At $\$ 56 \frac{3}{4}$ per 1000 .
8. 27890 bricks, at $\$ 10.40$ per 1000. At $\$ 9 \frac{1}{4}$ per M.
9. 349 pineapples, at $\$ 9.1 \%$ per 100. At $\$ 75 \frac{1}{2}$ per 1000 .
230. To find the cost when the thing or quantity is sold by the ton of $\mathbf{2 0 0 0}$ pounds.

1. At $\$ 6.50$ a ton, what will 1680 pounds of coal cost?

Explanation.-Since $\$ 6.50$ is the price of 2000 pounds, $\$ 3.25$ is the price of 1000 pounds. We obtain

$$
\frac{\text { OPERATION. }}{\frac{\$ 6.50 \div 2}{} \times 16 S 0} \frac{1000}{}=\$ 5.46 .
$$ the cost of 1680 pounds as in 229. Hence,

The product of the quantity in pounds by gne half the price, or one half the quantity by the price, divided by 1000 , equals the cost.
2. Find the cost of 2760 pounds of hay, at $\$ 18 \frac{1}{2}$ a ton.
3. A potter bought 5680 pounds of porcelain clay, at $\$ 1 \% .50$ a ton. What did it cost him?
4. Find the freight on 7950 pounds of iron, at $\$ 2 \frac{5}{8}$ a ton.
5. What will a load of plaster weighing 1784 pounds cost, at $\$ 2 . \% 5$ a ton? At $\$ 2.50$? At $\$ 4 \frac{1}{4}$? At $\$ 3.62 \frac{1}{2}$?
6. What is the cost of 100 sacks of bone-dust, each weighing $112 \frac{1}{2}$ pounds, at $\$ 26$ a ton? At $\$ 31 \frac{1}{4}$?
\%. What is the freight on 9860 pounds of iron, at $\$ 1.75$ a ton? On 18456 pounds, at $\$ 2.05$ a ton?
231. Let all the operations and results in the following examples be in decimals.

First, add the four numbers on each and every line of the two double columns ; thus, $417+.417+56.875+.0144=474.3064$, etc.

Next, take the first set of two numbers, 417 and .417 , find their difference, their product, and then the quotient of the first divided by the second.

Treat each set of numbers in both double columns in the same manner.

1. 41%, 41%.	16. $56.875, .0144$.
2. 2.052, . 0031.	17. 1.32, .7614948.
3. .314, . 0021.	18. $40.2, .82008$.
4. .00281, . 002.	19. . $08 \% 48, .0081$.
5. 72.36, . 0036.	20. .90804, .756\%
6. .00005, 2.5 .	21. $1.0665, .00135$.
\%. 512.1, 56.9.	22. $3 \frac{6}{25}, .014904$.
8. $10.005, .345$.	23. .2219904, .3854.
9. $47.75, \frac{7}{8}$.	24. $6 \frac{17}{64}, 2.0 \% 5$.
10. ${ }^{7} \frac{3}{4}, \frac{1}{26}$.	25. $\frac{629}{625}, .00352$.
11. $\frac{3}{32}, .005$.	26. $05 \frac{3}{16}, \frac{8}{25}$.
12. $3 \frac{1}{4}, \frac{81}{125}$.	2\%. . $\% 504,1000$.
13. $56 \frac{1}{4}, .075$.	28. .0016, 10000.
14. 3.5, .016.	29. $998.43 \% 5,17 \frac{3}{4}$.
15. $11,2.50$.	30. $56.3 \frac{3}{4}, 163 \frac{1}{16}$.

232. An Account is a record of items of debt and credit between parties.

A person who owes money, goods, or services, is called a Debtor; and the person to whom the money, goods, or services are due is called the Creditor.
233. A Bill is a written statement of goods sold or delivered, services rendered, or work done, with the price, quantity, and cost annexed to each item.

A bill should also state the nanies of the buyer and seller, the piace and time of the transaction, and any special terms agreed upon by the parties.

A bill is receipted when the words "Received Payment," or "Paid," are written at the bottom, and the creditor, or some one acting for him, affixes his name.
234. In bills various characters and abbreviations are in use. The following are some of the most common:

@,	At.	Excl., Exchange.	No. or \#,	-
Acce't, \%	Account.	Exps., Expenses.	Pay't,	Payment.
Am't,	Amount.	Fr't, Freight.	Pd.,	Paid.
Ass'd,	Assorted.	Fol, Folio.	Per,	By.
Bal,	Balanced.	Fw'd, Forwarded.	Pk'gs,	Packages.
Bo't,	Bought.	Inst., This month.		Pieces.
Co.,	Company.	Int., Interest.	Prem	Premium.
Cr,	Creditor.	Ins., Insurance.	Rec'd,	Rec
Dr.,	Debtor.	Invt, Inventory	Ship't,	Shipme
Dft.,	Draft.	Mdse., Merehandise.	S. S.,	Steamship.
Disc't,	Discount.	Mo., Month.	Sunds.,	
o.	The	Net, Without disc't.	Ult.,	ast mon

When the character @ is used, it is always followed by the price of a unit. Thus, 6 hats @ $\$ 5.50$ signifies 6 hats at $\$ 5.50$ cach.
235. Required the footings of the following bills:

Columbia, April 10, 1880.
Mr. James S. Rollins,
Bought of Moss \& Son.

26 yds. Silk,	$@$	$\$ 2.75$	$\$$
$44 \frac{1}{2}$ ". Sheeting,	"	.18	
2 ps. Muslin, 32 yds.,	"،	$.12 \frac{1}{2}$	
6 pair Kid Gloves,	"	$1.87 \frac{1}{2}$	
		$A m^{\prime} t, \$$	

St. Louis, Sept. 4, 1881.
Messrs. Hayes \& Glenn,
Boot of Edgar \& Coste.

> 140 lbs. Java Coffee, 216 " Coffee Sugar A, 6 boxes Soap, Babbitt's best, 486 lbs., " $7 \frac{1}{8} \%$. 1 " Duryea's Starch, 40 lbs., " $8 \frac{1}{4} \%$.

Received Payment. Edgar \& Coste.

Chicago, Jan. 14, 1880.
Messrs. J. B. Hoyt \& Co.,
Bo't of Farwell \& Sons.

1 case Cassimeres, . 176 yds.,	@	\$1.87\%		
2 cases Prints, 850 "	"	. 091		
1 bale Drilling. 578 "	"	. 14		
5 ps. Shaker Flannel, 216 "	"	. $62 \frac{1}{3}$		
12 doz. Coates' Thread,	"	. 70		
50 gross Silk Buttons,	"	. $87 \frac{1}{2}$		
15 M . Milward's Needles,	"	$2.87 \frac{1}{2}$		

Rec'd Pay't by note at 4 mo.,
Farwell \& Sons.
(4.)

New Orleats, Nov. 7, 1879.
Mr. George Lane,
Bo't of Francis \& Baker. 10 bales Cotton, ea. 516 lb ., Texas Miådings, @ $14 \frac{3}{3} \%$ § 14 " " " " 495 " Good Ordinary, " $11 \frac{1}{\frac{1}{4} \%}$ 8 " " " 520 " Alabama Fair, " 135 $\%$. 6 hhd., 414 gal., N. O. Molasses (choice), " 66%.

Rec'd Payment by draft on N. York, T. Moroney,

For Francis \& Baker.
(5.)

Mr. Benj. F. Taylor,
Lowell, April 6, 1881.
To Ames Kent, Dr.

Rec'd Payment,
Amos Kent.
(6.)

Mr. Joseph Norwood,
Sedalia, Jan. 3, 1880.
To G. S. Bryant, Dr.

Rec'd Payment,
G. S. Bryant.

Messrs. Dodge, Phelps \& Co., In Acct. with Lane Bros., Dr.

8. Henry Jones bought of Hill \& Bro., Springfield, Ill., May 15, 1879, 42 lb . of sugar @ 13ϕ; 3 lb . Y. H. tea @ $\$.90$; 4 gal. molasses @ $\$.63$; 48 yd. sheeting @ $16 \phi ; 1$ box starch, 14 lb ., @ $9 \frac{1}{2} \phi$; and 8 doz. eggs @ 21ϕ. Make the bill, and find the amount due.
9. The following items were sold in Cleveland, \mathbf{O}., by George Bliss \& Co., to Mrs. S. C. Barr, Sept. 25, 1879 : 16 yd. silk @ $\$ 3 \frac{1}{2}$; 6 pair hose @ $62 \frac{1}{2} \phi$; 2 pr. kid gloves @ $\$ 1.75$; 8 yd. ribbon @ 26 ; 6 handkerchiefs @ 42 4 ; 10 yd. cambric @ 11ϕ; 1 umbrella @ $\$ 3 \frac{3}{8}$; $3 \frac{1}{4}$ yd. elastic @ 24ϕ; 21 2 yd. ruching @ 60ϕ; 11 y yd. silk velvet @ $\$ 4$; and 6 doz. buttons @ $37 \frac{1}{3} \phi$. Make out a receipted bill.

REVIEWS

Written Exercises.

236. 237. At $\$.75$ a bushel, how many sacks of corn, each containing $2 \frac{1}{2}$ bushels, will $\$ 67 \frac{1}{2}$ purchase ?
1. At $\$.31 \frac{1}{4}$ a bushel, how many bushels of apples can be bought for $\$ 18$? $\$ 2 \%$? $\$ 31 \frac{1}{2}$? $\$ 63$?
2. What is the cost of 1475 pounds of guano, at $\$ 37 \frac{1}{2}$ a ton? Of 3840 pounds, at $\$.48$ a ton?

Find the cost of
4. $17 \frac{1}{2}$ yards of cloth, if $14 \frac{1}{4}$ yards cost $\$ 21.37 \frac{1}{2}$.
5. $23 \frac{3}{8}$ cords of wood, if 9.55 cords cost $\$ 21.48 \frac{3}{4}$.
6. $56 \frac{1}{4}$ pounds of butter, if 252 pounds cost $\$ 84$.

7\%. $8 \% 5$ of a ton of hay, if $4 \frac{5}{8}$ tons cost $\$ 59.5 \%$.
8. $\frac{3}{4}$ of a ton of plaster, if 1560 pounds cost $\$ 2 \frac{1}{2}$.
9. 78 pounds of wool, if 175 pounds cost $\$ 69.65$.
10. 1650 pineapples, if 100 cost $\$ 16 \frac{1}{4}$.
11. $26 \% 80$ bricks, if $1000 \operatorname{cost} \$ 8 \frac{7}{8}$.
12. 975 pounds of bone dust, if a ton cost $\$ 36 \frac{1}{5}$.
13. 100 pounds of cheese, if 84 of 100 pounds cost $\$ 15$? .
14. Bought $13 \frac{3}{4}$ barrels of sugar for $\$ 226.8 \% \frac{1}{2}$, and sold it for a profit of $\$ 3.37 \frac{1}{2}$ a barrel. For how much was it sold?
15. Find the value of 36 head of cattle, of an average weight of 1135 pounds each, at $\$ 9.4$ per 100 pounds.
16. The cheese made of the milk of 26 cows during a season was sold for $\$ 634.92$, at $18 \frac{1}{2}$ cts. a pound. What was the number of pounds sold, and the average per cow?
17. Sold 5225 feet of pine boards for $\$ 169.81 \frac{1}{4}$, and gained by the sale $\$ 39.18 \frac{3}{4}$. What did it cost per C. ?
18. At $\$.65$ a bushel for barley, $\$.42$ for oats, $\$.87 \frac{1}{2}$ for corn, and $\$ 1.62 \frac{1}{2}$ for wheat, how many bushels, of each an equal number, can be bought for $\$ 453.39$?
19. Bought a quantity of coal, and sold .25 of it to one man, $.4 \frac{1}{2}$ to another, .09 to another, and kept $13 \frac{1}{8}$ tons. What was the quantity bought, and its cost, at $\$ 4 \frac{5}{8}$ per ton?
20. If I own .3 of a steamship, and sell $.5 \frac{1}{2}$ of my share for $\$ 3300$, what is the value of $\frac{3}{4}$ of the ship at the same rate?
21. If a man, on an average, drink 3 glasses of beer a day, costing 5 cents a glass, and smokes 3 cigars, at 10 cents each, for 20 years, allowing 365 days to the year, how many acres of land, worth $\$ 15$ an acre, would the money buy?

22 . If 11.5 acres of land cost $\$ 362 \frac{1}{4}$, what is .875 of an acre worth?
23. Bought 500 barrels of apples, at $\$ 2 \frac{5}{8}$ a barrel, and sold 150 barrels at $\$ 2 \frac{7}{8}, 100$ barrels at $\$ 3.12 \frac{1}{2}, 132$ barrels at $\$ 3 \frac{1}{6}$ a barrel, and the remainder at $\$ 2.96$ a barrel. What was my whole gain?
24. Shipped to Cuba 1500 barrels of flour, at $\$ 10 \frac{3}{4}$, and received in payment 90 hogsheàds of sugar, each weighing 640 pounds, worth $7 \frac{1}{2}$ cents a pound; ${ }^{75}$ bales of cotton, each weighing 512 pounds, worth $18 \frac{1}{4}$ cents a pound; and the remainder in coffee, at 28 cts. a pound. How many sacks of coffee, each weighing 50 pounds, were received?
25. A lumberman bought 325000 feet of lumber, at $\$ 16 \frac{1}{2}$ per M. and retailed it, at $\$ 2 \frac{1}{8}$ per C. What was his gain?
26. A man bought 214.56 acres of land, at $\$ 47.625$ an acre, and gave in payment 12 reapers, at $\$ 125 \frac{1}{2}$ each; 15 horses, at $\$ 153 \frac{3}{4}$ each; some patent rights, worth $\$ 1275$; 175 barrels of flour, at $\$ 9 \frac{7}{8}$ a barrel; and the remainder in cash. How much money did he pay?

27 . A fire destroyed $\frac{3}{8}$ of a pile of lumber, valued at $\$ 10000$. What would be the loss to a man who owned .35 of the entire pile?
28. Reduce ($\frac{3}{25}$ of $2.45-\frac{1}{100}$ of .02) $\div 1000$, to the form of a decimal.
29. $\left(124 \times 10+\frac{1}{10}\right.$ of $.01+.001$ of 10$) \div .03$ of $1000=$?

23\%. A Measure is a standard unit, established by law ar custom, by which quantity is measured or estimated.

Thus, length is ascertained by applying the foot or yard measure; capacity, by the use of the quart, the gallon, or the bushel measure; weight, by the use of the pound, etc.

MEASURES OF EXTENSION.

238. Extension is that which has one or more of the dimensions, length, breadth, and thickness, and may be a line, a surface, or a solid.
239. A Line has only one dimension, length.

The Standard Unit in linear, surface, and solid measure is the yard, which is subdivided into feet and inches.
240. Linear Measures are used in measuring lines and distances.

Table of Units. Equivalents.

In measuring goods sold by the yard, the linear yard is divided into halves, fourths, eighths, and sixteenths. In estimating duties in the Custom House, the yard is divided into tenths and hundredths.
241. Surveyors' Linear Measures are used by land surveyors in measuring roads and boundaries of land.

Table of Units.

7.92 Inches	$=1$ Link,
25 Links	$=1$ Rod, rd.
4 Rods	$=1$ Chain,
80 Chains	$=1$ Mile,

Equitalents.
$1 \mathrm{Mi} .=\left\{\begin{array}{r}63360 \mathrm{in} . \\ 8000 \mathrm{l} . \\ 320 \mathrm{rd} . \\ 80 \mathrm{ch} .\end{array}\right.$

A Gunter's Chain is the unit of measure, consisting of 100 links, and is 4 rods or 66 feet long.
242. Mariners' Measures are used by seamen in measuring distances, the depth of the sea, etc.

> TABLE OF Units.

The Nautical Mile (or Knot) is the same as the Geographic Mile, and is equal to 6086.7 feet, or about $1.15 \frac{1}{5}$ statute miles.
243. In Geographical and Astronomical calculations, and for other purposes, the following denominations are used.

Table of Units.

$\left.\begin{array}{l}60 \text { Geographic, or } \\ 69.16 \text { Statute Miles }\end{array}\right\}=1$ Degree $\left\{\begin{array}{l}\text { of Latitude on a Meridian, or } \\ \text { of Longitude on the Equator. }\end{array}\right.$
360 Degrees $=$ the Circumference of the Earth.
$1.15 \frac{1}{5}$ Common Miles $=1$ Geog. Mi. Used to meas. distances at sea 3 Geographic Miles = 1 Nautical League. 3 Barley-corns, or sizes $=1$ Inch. Used by shoemakers.

4 Inches $=1$ Hand. " $\left\{\begin{array}{c}\text { to measure the height of } \\ \text { horses at the shoulder. }\end{array}\right.$

The average length of a degree of latitude is 69.16 statute miles, and is the standard adopted by the U. S. Coast Survey.
244. Surface or Square Measures are used in computing areas.
245. An Angle is the opening between two right lines that proceed from a common point, called the Vertex.

Thus, ABD and DBC are angles, and B is their vertex.

When one line meets another line so as to make two adjacent angles equal, each angle is a Right Angle, and the lines are said to be perpendicular to each other.

Thus, ABE and EBC are right angles.
246. A Surface has two dimensions, length and breadth.

24\%. A Square is a plane figure, bounded by four equal sides, and haring four right angles.

A Square Inch is a square, each side of which is 1 in . in length.

SQUARE INCH.
Equivalents.

Roofing and flooring are usually estimated by the square, which contains 100 sq. ft.
248. Surveyors' Square Measure is used by surveyors in computing the area of land.

Table of Units.	Equivalents.	
625 Sq. Links $=1$ Pole, . P.	$1 T p .=$	2304000000 sq. l.
Poles $\quad=1$ Sq. Chain, sq. ch.		3686400 P
. Chains $=1$ Acre, . A.		230400
$=1 \mathrm{Sq}$. Mile, . sq. mi .		23040
36 Sq. Miles $=1$ Township, Tp.		36 sq .

Equivalents.
2304000000 sq. l. 3686400 P. 230400 sq. ch. 23040 A. 36 sq. mi.
249. Solid Measures are used in computing the contents of solids.
250. A Solid is a body, volume, or space, that has three dimensions, length, breadth, and thickness.
251. A Cube is a boly bounded by six equal squares, called Faces. The sides of these squares are called the Edges of the cube.

A Cubic Inch is a cube, each edge of which is 1 in . in length.
Table of Units. Equivalents. 1728 Cubic In. $(c u . i n)=.1 \mathrm{Cu}$. Foot, $c u, f t$.

27 Cubic Feet $=1 \mathrm{Cu}$. Yard, $c u . y d$.
16 Cubic Feet $=1$ Cord Ft., cd..ft.
$\left.\begin{array}{r}8 \text { Cord Feet } \\ 128 \text { Cubic Feet }\end{array}\right\}=1 \mathrm{Cord}, \quad . \quad$ Ca. $\left\lvert\, 1 \mathrm{Cd} . \quad=\left\{\begin{array}{r}128 \mathrm{cu} . \mathrm{ft} . \\ 8 \mathrm{~cd} . \mathrm{ft} .\end{array}\right.\right.$

MEASURES OF CAPACITY.

252. Capacity signifies extent of room or space.

Measures of capacity are of two kinds: Measures of Liquids, and Measures of Dry Substances.
253. Liquid Measures are used in measuring liquids.

The Standard Unit is the gallon, containing 231 cubic inches.
Table of Units.
$\left.\begin{array}{llllll}4 \text { Gills }(g i .) & =1 \text { Pint, } & . & . & . & p t . \\ 2 \text { Pints } & =1 \text { Quart, } & . & . & . & q t . \\ 4 \text { Quarts } & =1 \text { Gallon, } & . & . & \text { gal. }\end{array} \right\rvert\, 1$ Gal. $=\left\{\begin{array}{l}32 \text { gi. } \\ 8 \\ 4 q t . \\ 4 q t .\end{array}\right.$
In estimating the capacity of cisterns, reservoirs, etc.
$31 \frac{1}{2}$ Gal. = 1 Barrel, . . . bbl. \quad bbl. gal. qt. pt. 63 Gal. $=1$ Hogshead, . . hhd. 1 Hhd. $=2=63=252=504$.

The barrel and hogshead are not fixed measures, but vary when used for commercial purposes.
254. Apothecaries' Fluid Measures are used by physicians in prescribing, and by apothecaries in compounding liquid medicines.

Table of Units. 60 Minims $(m)=1$ Fluidrachm, $\cdot f 3$. 8 Fluidrachms $=1$ Fluidounce,..f_{3}. 16 Fluidounces $=1$ Pint, 0. 8 Pints $=1$ Gallon, . . . Cong.

Equivalents.
1 Cong. $=\left\{\begin{array}{r}m 61440 . \\ f 31024 . \\ f 弓 128 . \\ 0.8 .\end{array}\right.$

Cong. stands for the Latin Congius, a gallon; and O. for Octarius, one eighth, a pint being one eighth of a gallon.

A common teaspoon holds about one fluidrachm.
The symbols precede the numbers to which they refer.
255. Dry Measures are used in measuring grain, fruit, and other articles not liquid.

The Standard Unit is the bushel of 2150.42 cubic inches.

Table of Units.
2 Pints $(p t)=$.1 Quart, .

MEASURES OF WEIGHT.

256. Weight is the measure of the force of gravity, and varies as the quantity of matter in a body.

The Standard Unit of weight is the Troy Pound of the Mint, and contains 5760 grains.

25\%. Troy Weight is used in weighing gold, silver, and jewels.

> Table of Units.

Equivalents.
24 Grains (gr.) $=1$ Pennyweight, prot. 20 Pennyweights $=1$ Ounce, . . . oz.
12 Ounces
$=1$ Pound, . . . lb.
$1 \mathrm{lb} .=\left\{\begin{array}{c}5760 \mathrm{gr} . \\ 240 \mathrm{prot} . \\ 12 \mathrm{oz} .\end{array}\right.$
258. In weighing diamonds and gems, the unit generally employed is the Carat, which is about 3.2 Troy grains.

Diamond Weight.

16 Parts $=1$ Carat Grain.
4 Carat Gr. $=1$ Carat.
1 Carat $=3 \frac{1}{6}$ Troy gr., nearly. 24 Carats $=1$ Troy lb.
The term Carat is also used to express the fineness of gold.
259. Apothecaries' Weight is used in prescribing and in compounding $d r y$ medicines.

Table of Units. Equivalents.

The pound, ounce, and grain of this weight are the same as those of Troy weight. The pound in each contains 5760 grains.

Medicines are bought and sold in quantities by Avoirdupois weight.
260. Avoirdupois Weight is used for all the ordinary purposes of weighing.

Table of Units.
Equivalents.

16	$=1$ Pound, . .	
100 Pounds	$=1$ Hundredweight, coot.	$r .=$
redweight, or $\}$		1T. $=$ 2
2000 Pounds $\}$		

261. In weighing some of the coarser articles, as iron and coal at the mines, and groods on which duties are paid at the U. S. Custom Houses, the long ton of 2240 pounds is still used.

Table of Units. Equivalents.
28 Pounds $\quad=1$ Quarter, . . . q r.
4 Qr., or 112 lb . $=1$ Hundredweight, crot.
20 Hundredweight, or $\}=1$ Ton, T.
$1 T:=\left\{\begin{array}{c}2240 \mathrm{lb} . \\ 80 \mathrm{qr} . \\ 20 \mathrm{cot} .\end{array}\right.$

262．COMPARISON OF WEIGHTS．

263．The number of Avoirdupois pounds in a bushel， as fixed by law in the States named：

\begin{tabular}{|c|}
\hline Commodities． \& ？ \& $$
0
$$ \& $$
\begin{aligned}
& \underset{\sim}{c} \\
& \underset{\sim}{c}
\end{aligned}
$$ \& $$
\equiv
$$ \& \& \& 比 \& 5 \& \& \& $$
\frac{3}{3}
$$ \& 苞 \& 谷 \& \％ \& $$
\begin{aligned}
& 2 \\
& z \\
& \square
\end{aligned}
$$ \& 4 \& \& $$
40
$$ \& \& \& ， \& \(2

y2\) \& 2

\hline \& 50 \& \& \& 48 \& \& \& 48 \& 32 \& \& \& \& 48 \& 48 \& 48 \& \& \& \& 48 \& $$
46
$$ \& \& 74 \& 45 \& 48

\hline Buckwheat， \& 40 \& \& \& 40 \& 50 \& \& 52 \& \& \& \& $$
6
$$ \& \[

42

\] \& 52 \& 50 \& \& \& \& \& \[

42
\] \& \& 46 \& 42 \& 42

\hline Clover Seed， \& \& \& \& 60.6 \& 60 \& \& 60 \& \& \& \& \& 60 \& 60 \& \& \& \& 60 \& 60 \& 06 \& \& \& 60 \& 60

\hline Indian Corn， \& 52 \& 56 \& 656 \& 525 \& 56 \& \& 56 \& 56 \& \& \& 56 \& 56 \& 56 \& 56 \& \& \& 58 \& 86 \& 56 \& \& 56 \& 56 \& 56

\hline Oats， \& 32 \& 28 \& \& 323 \& 32 \& \& $33 \frac{1}{3}$ \& 32 \& 30 \& \& 132 \& 32 \& 32 \& \& 30 \& \& 32 \& 32 \& 34 \& 32 \& ｜32 \& 36 \& 32

\hline \& 54 \& 56 \& \& \& \& \& 56 \& 32 \& \& 56 \& \& 56 \& 56 \& \& \& \& \& 56 \& 55 \& \& \& 556 \& 56

\hline Timothy Seed， \& \& \& \& 45 \& 45 \& \& 45 \& \& \& \& \& \& 45 \& \& \& \& 44 \& \& \& \& \& \& 46

\hline Wheat， \& 60 \& 56 \& 66 \& 60 \& 60 \& 60 \& 60 \& 60 \& \& 60 \& 00 \& 60 \& 60 \& 60 \& \& 60 \& 60 \& 60 \& 060 \& 60 \& 60 \& 06 \& 60

\hline
\end{tabular}

Peas，beans，and potatoes are usually weighed 60 lb ．to the bushel．
The following denominations are also in common use：
100 lb ．of Grain or Flour＝1 Cental．｜ 195 lb ．of Flour＝ 1 Barrel． 100 ＂Dry Fish＝1 Quintal． 200 ＂Beef or Pork＝ 1 Barrel． 100 ＂Nails＝1 Keg． 240 ＂Lime＝ 1 Cask． 280 lb ．of Salt at N．Y．Salt Works＝ 1 Barrel．

MEASURES OF TIME．

264．The Standard Unit of Time is the mean solar day．

Table of Units．
60 Seconds（sec．）$=1$ Minute，．．min．
60 Minutes $=1$ Hour，．．．$h r$ ．
24 Hours $=1$ Day，．．．da．
7 Days $=1$ Week，．．．wot．
$\left.\begin{array}{l}365 \text { Days，or } \\ 12 \text { Calendar Mo．}\end{array}\right\}=1$ Common Year，$y r$ ．
366 Days
$=1$ Leap Year，．$y r$ ．
100 Years
＝ 1 Century，．Cen．

Equivalents．
Common Year．
$1 \mathrm{Yr} .=\left\{\begin{array}{r}525600 \mathrm{~min} . \\ 8760 \mathrm{hr} . \\ 365 \mathrm{da} . \\ 52 \mathrm{wk} . \\ 12 \mathrm{mo} .\end{array}\right.$

The months in the year, and the number of days in each.

Montis.		No. Days.		Montis.	No. Dars.
1. January,	Jan.,	31.	7. July,	July,	31.
2. February,	Feb.,	28 or 29.	8. August,	Aug.,	31.
3. March,	Mar.,	31.	9. September,	Sept.,	30.
4. April,	Apr.,	30.	10. October,	Oct.,	31.
5. May,	May,	31.	11. November,	Nov.,	30.
6. June,	June,	30.	12. December,	Dec.,	31.

In most business transactions, 30 days are counted as a month, and 12 months a year.

A true year is the time of one revolution of the earth around the sun, which is 365 da .5 hr .48 min .46 .15 sec . If we consider 365 da . as a common year, the time lost in the calendar in 4 years will lack only 44 min .55 .4 sec . of a day. Hence, we add 1 day to February every fourth year, calling it Leap Year, which contains 366 days.

In 100 years, this difference of 44 min .55 .4 sec . amounts to 18 hr . 43 min 5 sec. ; hence, at the end of 100 years we omit to add 1 day, thus losing 5 hr .12 min .55 sec ., which is corrected by adding 1 day at the end of 400 years. Hence,

When the number denoting the year is divisible by 4, and not by 100, and also when it is divisible by 400, it is a Leap Year.

CIRCULAR MEASURES.

265. A Circle is a plane figure bounded by a curved line, all points of which are equally distant from a point within called the Centre.
266. A Circumference is the line that bounds a circle.

26\%. A Degree is one of the 360 equal parts into which
 the circumference of a circle is supposed to be divided.
268. Circular or Angular Measure is used in meas uring angles, determining latitude and longitude, etc.

The Standard Unit of Circular Measure is the degrec.

Table of Units.

60 Seconds $\left.{ }^{(\prime \prime}\right)$	$=1$ Minute,
60 Minutes	$=1$ Degree,
30 Degrees	$=1$ Sign,	S.		
12 Signs, or 360°	$=1$ Circumference	C.		

Equivalents.
$1 C .=\left\{\begin{array}{r}1296000^{\prime} . \\ 21600^{\prime} . \\ 360^{\circ} . \\ 12 \mathrm{~S} .\end{array}\right.$

The length of a degree varies with the size of the circle; thus, a degree of long. at the Equator is 69.16 stat. mi., at 30° of latitude it is 59.89 mi ., at 60° of latitude it is 34.58 mi ., and at 90° it is nothing.

A minute of the earth's circumference is called a geographical or nautical mile, and is equal to $1.15 \frac{1}{5}$ common miles.
269. In Counting certain articles, use the following:

Table of Units.

2\%O. Used by Stationers and the Paper Trade.

Table of Units.

24 Sheets $=1$ Quire, . . . $q r$.
20 Quires $=1$ Ream, rm.
2 Reams $=1$ Bundle, . . . bun.
5 Bundles = 1 Bale, B.

Equivalents.
$1 B .=\left\{\begin{array}{r}4800 \text { Sheets. } \\ 200 \text { Quires. } \\ 10 \text { Reams. } \\ 5 \text { Bundles. }\end{array}\right.$

2\%1. A Book formed of sheets folded

MEASURES OF VALUE.

2\%2. Money is the measure of value.
2'3. United States Money is the legal currency of the United States.

The Stamdard Unit of United States Money is the Gold Dollar, weighing 25.8 gr .

Table of Units.	Equivalents.
10 Mills (m.) $=1$ Cent, . . ct.	$\int 10000 \mathrm{~m}$.
10 Cents $=1$ Dime, . . d.	$1 E=\left\{\begin{array}{l}1000 \\ \text { cts. }\end{array}\right.$
10 Dimes $=1$ Dollar, . \$.	100 d.
10 Dollars $=1$ Eagle, . . E.	10 \$.

The legal Coin of the United States is as follows: Gold, the double-eagle, eagle, half-eagle, quarter-eagle, three-dollar, and onedollar pieces; Silver, the trade-dollar, new currency-dollar, halfdollar, guarter-dollar, and ten cent pieces; Nickel, the five-cent and three-cent pieces ; Bronze, the one-cent piece.

The Trade-dollar, used for commercial purposes, weighs 420 grains.
The New Currency-dollar of 1878 weighs $412 \frac{1}{2}$ grains.
2\%4. English or Sterling Money is the legal currency of Great Britain.

The Standard Unit of Eng. Money is the Sov., or Pound Sterling.
Table of Units. U. S. Value.
4 Farthings (far.) = 1 Penny, . . . d. . . . $\$.02027+$

12 Pence	$=1$ Shilling, . . s.
2 Shillings	$=1$ Florin, . . . fl. .
5 Shillings	$=1$ Crown, . . . cr.
20 Shillings	$=\left\{\begin{array}{lll} 1 \text { Sovereign, or } & . & \text { sov. } \\ 1 \text { Pound, } & . & £ \end{array}\right\}$

21 Shillings $=1$ Guinea, . . G. . $\$ 5.11$
The Coin of Great Britain in general use is as follows: Gold, the sovereign and half-sovereign; Silver, the crown, half-crown, florin, shilling, six-penny, and three.penny pieces; Copper, the penny, half penny, and farthing.

2\%5. Canada Money is the legal currency of the Dominion of Canada.

The Coin of the Dominion of Canada in use is-Gold, the sovereign and half-sovereign ; Silver, the fifty-cent, twenty-five cent, tencent, and five-cent pieces; Bronze, the one-cent piece.

The silver and bronze coins have the same nominal value as the corresponding denominations of U. S. Money.

The intrinsic value of the 50 -cent piece in United States coin is about $46 \frac{1}{5}$ cents ; of the 25 -cent piece, $23 \frac{1}{10}$ cents.

2\%6. French Money is the legal currency of France, and is decimal.

The Standard Unit of French Money is the Silver Franc.

10 Millimes (m).	$=1$ Centime,	.	$c t$.	.	$\$ 0.00193$	
10 Centimes	$=1$ Decime,	.	$d c$.	.	.0193	
10 Decimes	$=1$ Franc,	.	.	$f r$.	.	.193

The Coin of France consists of the following: Gold, 100, 40, 20, 10 , and 5 francs; Silver, 5, 2, and 1 franc; Bronze, 10,5, 2, and 1 centime pieces.

2\%\%. The New Empire of Germany has adopted a new and uniform system of coinage.

The Standard Unit of the new coinage is the "Mark" (Reichsmark), subdivided into 100 pennies (Pfennige).

The value of the "Marl" in United States money is $\$.238 \frac{1}{2}$.
The Coin of the New Empire is as follows: Gold, 20, 10, and 5 marks ; Silver, 2 and 1 mark, and 20 penny; Nickel, 10 and 5 penny, and pieces of less value.

The silver thaler, equal to $\$.746$, and the silver groschen, equal to $2 \frac{1}{2}$ cents, are in common use.

2'\%8. Japan has a new and decimal system of coinage.
The Standard Unit of the new coinage is the gold Yen, valued at \$.997 United States Money.

The Coin of Japan consists of five gold coins, valued at $\$ 20, \$ 10$, $\$ 5, \$ 2$, and $\$ 1$. Also five silver coins, valued at $5,10,20,50$, and 100 cents respectively.

2\%9. A Denominate Number is a number whose unit is named (5), and may be either Simple or Compound.

Thus, 40 inches, and 3 feet $\overline{5}$ inches are denominate numbers.
280. A Simple Denominate Number expresses a quantity in units of but one denomination.

Thus, $24 \mathrm{hr} ., 10 \mathrm{bll} ., 50 \mathrm{cts}$., are simple denominate numbers.
281. A Compound Denominate Number expresses a quantity in two or more denominations of the same kind.

Thus, $5 \mathrm{yd} .2 \mathrm{ft},. 7 \mathrm{lb} .5$ oz., are compound denominate numbers.
282. A Denominate Fraction is one which expresses one or more of the equal parts of a denominate unit.

Thus, $\frac{7}{8}$ of a pound, .9 of a mile, are denominate fractions.

REDUCTION.

283. Reduction of Denominate Numbers is the process of changing the denomination of a number without changing the value.

Thus, 3 yards may be expressed as 9 feet, or 108 inches ; 36 pints as 18 quarts, or 4 gallons 2 quarts.
284. To change denominate mumbers to lower denominutions.
MENTAL EXERCISES.

How many

1. Inches in 4 ft .? In 6 ft ? Feet in 5 yd ?
2. Quarts in 5 gal.? In 3 gal. 2 qt.? Pecks in 10 bu.?
3. Rods in 10 ch ? In 4 ch .3 rd .? Feet in $8 \frac{1}{2}$ fath.?

How many
4. Sq. ft. in 6 sq. yd.? In 12 sq. yd.? Drams in 8 oz.?
5. Days in 12 wk .? In 4 wk. 5 da.? In $6 \frac{3}{7}$ wk.?
6. Ounces in 3 lb .6 oz ? In $4 \frac{3}{4} \mathrm{lb}$.? In $5 \frac{3}{8} \mathrm{lb}$.?
\%. Pounds in $\frac{1}{2}$ ton? In 7 cwt ? ? In $4 \frac{1}{2} \mathrm{cwt}$.?
8. Min. in 2 hr . 20 min .? In $\frac{1}{2} \mathrm{hr}$.? In $1 \frac{1}{4} \mathrm{hr}$.?
9. Sq. ch. in 5 A.? In 3 A. 5 sq. ch.?
10. How many miles in 12 leagues? In 20 lea. 2 mi. ?
11. How many inches high is a horse that measures 16 hands?
12. At 4 cts. a foot, what will 10 yards of wire cost?
13. What is the cost of a cable 8 fath. long, at $\$ 1$ a foot?
14. What part of an acre is $40 \mathrm{sq} . \mathrm{rd}$.? 5 sq . ch.?
15. How many sq. rods in $\frac{1}{2}$ of an acre? In $\frac{1}{4}$? In $\frac{3}{4}$?
16. How many cubic feet in $\frac{1}{4}$ of a cord? In $\frac{1}{2}$?

1\%. What will 10 pounds of clover-seed cost, at $\$ 10$ a bushel?
18. What will a ton and a half of hay cost, at 1 cent a pound?
19. At $\$ 3$ a bushel, what must be paid for a bag of beans, weighing 100 pounds?
20. At 10 cts. a quart, what will 1 peck of peanuts cost?
21. How many quart boxes will 3 pk .4 qt . of cherries fill?
22. How many spoons, weighing 2 oz . each, can be made of 1 lb .10 oz . of silver? Of $2 \frac{1}{4} \mathrm{lb}$.?
23. Which is heavier, an ounce of calomel, or an ounce of silver? An ounce of butter, or an ounce of gold?
24. At 10 cts. a pound, what will 2 cwt . of sugar cost?
25. What will $\frac{1}{2}$ ton of hay cost, at $1 \frac{1}{2}$ cts. a pound ?
26. How many pounds in $\frac{1}{2} \mathrm{bbl}$. of pork? In $\frac{1}{2}$ bbl. of flour? In $\frac{3}{10}$ of a cental of wheat?

2\%. In 1 T. 8 cwt . how many pounds? In $\frac{1}{4}$ of a ton?
28. How many days from April 1 to Aug. 10, inclusive?
29. How many degrees in a quadrant? In a sextant?
30. In 2 reams how many quires? Reams in a bale?
31. What cost 1 gross of pens, at 10 cents a dozen? Half a ream of paper, at 25 cents a quire?
285. Principle. A denominate number is changed to lower denominations by multiplication.

Written Exercises.

286. 287. Reduce 6 bu. 2 pk .6 qt . 1 pt. to pints.

Explanation. Since in 1 bu . there are 4 pk ., in 6 bu .2 pk . there are 6 times 4 pk., plus 2 pk.; $\overline{6 \times 4}+2=26$, the number of pecks in 6 bu .2 pk .

Since in 1 pk . there are 8 qt ., in 26 pk .6 qt. there are 26 times 8 qt., plus 6 qt. ; $\overline{26 \times 8}+6=214$, the number of quarts in 6 bu .2 pk .6 qt .

And since in 1 qt . there are 2 pt .,
operation. 6 bu. 2 pk. 6 qt. 1 pt. 4 26 pk .
8
214 qt.
$\frac{2}{429} \mathrm{pt}$. in 214 qt .1 pt . there are 214 times 2 pt ., plus 1 pt . ; $\overline{214 \times 2}+1=429$, the number of pints in 6 bu .2 pk 6 qt .1 pt .
2. In 8 wk. 3 da. 10 hr. 30 min., how many minutes?
3. Change 12 cwt . 22 lb .9 oz . to ounces.
4. How many inches in 9 yd .2 ft .7 in ?
5. How many gills in 14 gal. 3 qt. 1 pt. 1 gi.?

Rule. 1. Multiply the number of the highest denoraination given by the number of units of the next lower denomination required to make one of that higher, and to the product add the given number of the lower denomination, if any.
2. Proceed in like manner with this result and each successive denomination obtained, until the given number is reduced to units of the required denomination.

Reduce

6. 18 rd .9 ft .8 in . to inches.
7. £9 15s. 9d. to pence.
8. 21 lb .6 oz .14 pwt. to pwt.
9. 3 mi .26 ch .2 rd. 10 l . tol.
10. $\mathrm{Hb} 3 \approx 634$ Э 2 gr. 7 to gr. 11. 6 mi .45 rd . to yards.
11. 125 A . to square feet.
12. 36 gal .1 pt . to gills.
13. 142 T .7 cwt .26 lb . to lb .
14. 1 cwt .6 oz . to oz.
15. 2 mi .5 ch .3 rd . to links.
16. 21° on the Equator to mi.
17. 26 fathoms to inches.
18. 12 gross 5 doz. to dozens.
19. 16 A. 4 sq. ch. to sq. rd.

Reduce

21. $6 \mathrm{cu} . \mathrm{yd} .18 \mathrm{cu} . \mathrm{ft}$. to cu. in. 22. 14 cords to cubic feet. 23. 27 bu. 3 pk . to quarts.
22. 4 da. 5 hr .45 min . to min.
23. 2 common years to hours.
24. 245 eagles to cents.
2%. 120 rods to inches.
25. Cong. 60.5 to f3.
26. $7 \mathrm{~cd} . \mathrm{ft} .11 \frac{3}{4} \mathrm{cu} . \mathrm{ft}$. to cu.in.
30.6 mi .96 rd .4 yd . to yd .
27. 44 bbl of flour to pounds.
28. $28 \frac{1}{2} \mathrm{yd}$. of cloth to qr .
29. $6 \frac{1}{4} \mathrm{yd}$. of silk to eighths.
30. $16^{\circ} 24^{\prime} 26^{\prime \prime}$ to seconds.
31. 2 B .3 bun. of paper to qr.

How many pounds
36. In $28^{\circ} \mathrm{bbl}$ of flour?
3% In 9 bbl . of beef?
38. In $12 \frac{1}{2}$ quin. of fish ?
39. In 47 kegs of nails?
40. In 5 casks of lime?
41. In 14.5 cen. of grain?
42. In $56 \frac{1}{2}$ bu. of wheat?
43. In $6 b$ bu. of oats?
44. In 36.5 bu. of corn ?
45. In $10 \frac{3}{4}$ bu. of clover-seed?
46. In 120 bu . of potatoes?

4\%. In 36.25 bu. of rye?

Value in U. S. money:
48. Of 45 sovereigns?
49. Of £16 12s. ?
50. Of 60 crowns?
51. Of 150 francs?
52. Of 75 marks?
53. Of 26 guineas?
54. What is the value of 10 lb .7 oz .16 pwt . of old gold, at $\$.75$ a pwt. ?
55. How many barrels will be required to hold 167% bu. 2 pk . of potatoes, each containing 2 bu .3 pk .?
56. At 9 cts. each, what would be the cost of 5 gross of writing books?

5\%. How many pages in an 8 vo book containing 18 printed sheets?
58. What will be the cost of 12 hhd. of sugar, each containing 5 cwt .18 lb ., at 8 cents a pound ?
59. How many sacks, each holding 2 bu .3 pk ., will be required to hold 20002 bu . of wheat?
60. Bought 90 gal. of molasses, at $\$.84$ a gallon, and sold it at $\$.28$ a quart; what was the gain?

What is the cost
61. Of a gold chain, weighing $2 \mathrm{oz} .6 \frac{1}{2}$ pwt., at $\$ 1.10$ a pwt.? At \$1.121 $\frac{1}{2}$ a pwt.?
62. Of 7 cwt . 45 lb . of rice, at $6 \frac{1}{2}$ cents a pound?
63. Of $2 \frac{3}{4} \mathrm{bbl}$. of flour, at 5 cents a pound? At $6 \frac{1}{4}$ cts.?
64. Of building a wall $\frac{1}{4}$ of a mile long, at 10 cents a foot?
65. Of a gross of pencils, at $\$.40 \mathrm{a}$ doz. ? At $4 \frac{1}{2}$ cts. ea.?
66. Of 2 bu. of chestnuts, at 12 cents a quart?

28\%. To change denominute.nombers to higher denominations.

> MENTAL EXERCISES.

How many
How many

1. Feet in 144 in.? Yards? 10. Tons are 45 cwt.? 63 cwt.?
2. Sq. yd. in 18 sq. ft. ?
3. Quarts in 112 pt.? Pecks?
4. Gallons in 56 qt . ? 72 pt.?
5. Acres in 120 sq. ch.?
6. Bushels in 64 qt.? 41 pk.?
7. Shillings in 240d.? cr. ?
8. Francs in 500 centimes?
9. Marks in 600 pennies?
10. Dozens in 144 pens?
11. Pounds are 96 oz. butter?
12. Pounds are 96 oz . silver ?
13. Pounds are 60 oz . quinine?
14. Reams are 140 quires?

1\%. Bu. are 600 lb . wheat?
18. Pounds are 240 pwt.?

19．Change 0.84 to Cong．；f 396 to $\mathrm{f} 弓$ ； $\mathrm{f} \bar{弓} 64$ to 0 ．
20．Change $Э 60$ to oz．； 3120 to Hb ；$亏 100$ to Hb ．
21．How many degrees in 150^{\prime} ？Signs in 180° ？
22．How many cubic yards in 81 cu ．ft．？
23．In 144 in．how many hands？Spans？Feet？
24．How many bbl．in 1200 lb ．of beef？In 600 lb ．of pork ः
25．When pork is worth $\$ 20$ a barrel，what is 25 lb ．worth ？
26．At 6 cents a pint，how many quarts of cherries can be bought for $\$.72$ ？

2\％．What will 3 pk ．of apples cost，at $\$.80 \mathrm{a}$ bushel ？
28．What will 8 sheets of paper cost，at $\$.18$ a quire？
29．At $\$.36$ a yard，what will 2 ft ．of ribbon cost？ 12 in ．？
30．What part of a pound Avoir．are 8 oz ？ 4 oz ．？ 12 oz ．？
31．In a field containing 320 sq．rods，how many acres？
288．Principle．A denominate number is changed to higher denominations by DIVISION．

WRITTEN EXERCISES．

289．1．Change 3095 gills to gallons．
Explanation．Since 4 gi．equal 1 pt．， 3095 gi．equal as many pints as 4 is contained times in 3095 ，or 773 pt ． +3 gi．

Since 2 pt．equal 1 qt．， 773 pt．equal as many quarts as 2 is contained times in 773 ，or 386 qt．+1 pt．

OPERATION．

4	$\frac{3095}{2}$ gi．
2	$\frac{743}{386}$ pt．+3 gt．+1 pt.
96 gal．$+2 \mathrm{qt}$.	

Since 4 qt．equal 1 gallon， 386 qt． equal as many gallons as 4 is contained times in 386 ，or 96 gal．+2 qt Hence，in 3095 gi．there are 96 gal． 2 qt． 1 pt． 3 gi．

In like manner，change
2． 6320 pennyweights to lbs．${ }^{5}$ ． 5260 pints to bushels．
3． 4346 pence to pounds．
4． 64800 minutes to weeks．

6． 42465 ounces to tons．
7． 2876 farthings to pounds．

Rule. 1. Divide the given number by the number of units of the given denomination required to make a unit of the next higher denomination.
2. In the same manner, divide this and each successive quotient, until the required denomination is reached. The last quotient, with the remainders annexed, will be the required result.

Change the following to units of higher denominations:
8. 42621 gr . to pounds.
9. 107624 sq. in. to sq. yds. 10. 157060 pounds to tons. 11. 12627 min . to days.
12. 15672 inches to rods.
13. 26000 links to chains.
14. 4276 sq. ch. to acres. 15. $364220^{\prime \prime}$ to degrees.
16. 13264 farthings to $£$.
17. 3648 doz. to gross.
18. 26382 sheets to reams.
19. $Э 4580$ to pounds. 20. 182642 cu. in. to cd. ft. 21. 10724 links to miles. 22. 6728 cu . in. to gallons. 23. 2078420 cu . in. to bushels. 24. 36840 lb . of wheat to bu. 25. $\$ 389.32$ to sovereigns.

What will be the cost
26. Of 256 pints of chestnuts, at $\$ 1.75$ a bushel?

27 . Of $\frac{1}{2}$ an acre of land, at $\$.16$ a square foot?
28. Of 8000 lb . of feed, at $\$.75 \mathrm{a}$ hundredweight?
29. Of 6000 lb . of wheat, at $\$ 1.80$ a bushel ?
30. Of 480 cord feet of wood, at $\$ 3 \frac{1}{2}$ a cord ?
31. How many peanuts can be bought for $\$ 12.56$, at 8 cts. a pint?
32. How many acres in a field containing 7200 sq. rd.?
33. What is the cost of a load of barley in New York, weighing 2400 lb ., at $\$.62 \frac{1}{2}$ a bushel ?
34. How much time will a person gain in 4 yr . by rising $\frac{1}{2}$ an hour earlier, and retiring 20 min . later every day?
35. How many reams of paper will be required to supply 2500 subscribers with a weekly paper 1 year?
290. To change a denominate fraction to integers of lower denominations.

MENTALEXERCISES.

1. Change $\frac{3}{4}$ of a peck to quarts.

Analysis. Since 1 peck equals 8 qt., $\frac{3}{4}$ of a pk. is equal to $\frac{8}{4} \mathrm{ct}$ 8 qt . $\frac{3}{4} \times 8=\frac{24}{4}=6$. Hence, $\frac{3}{4} \mathrm{pk} .=6 \mathrm{qt}$.
2. Change .5 of a pound Avoir. to lower denominations.

Analysis. Since 1 pound equals 16 oz., .5 of a pound equals .5 of 16 oz . ; $.5 \times 16=8$. Hence, $.5 \mathrm{lb} .=8 \mathrm{oz}$.
3. Change to hours, $\frac{1}{3}$ da. ; $\frac{1}{4}$ da. $; \frac{5}{6}$ da. $; \frac{3}{8}$ da.
4. How many pecks in $\frac{1}{4}$ bu.? In .5 bu.? In $\frac{3}{4}$ bu.?
5. Reduce to minutes $.6 \mathrm{hr} . ; .25 \mathrm{hr} . ; 8 \mathrm{hr}$. ; $\frac{4}{8} \mathrm{hr}$.
6. How many inches in $\frac{2}{3} \mathrm{ft}$? $\mathrm{In} \frac{7}{12} \mathrm{ft}$.? In . 25 ft .?
7. How many cwt. in $\frac{3}{5}$ T.? How many pounds?
8. Change $\frac{3}{4} \mathrm{lb}$. Troy to oz. ; . 3 oz . to pwt. ; . 45 cwt . to lb .

Written Exercises.

291. 292. Change 645 lb . Troy, and $\frac{4}{8}$ bu. each to units of lower denomination.

operation. .645 lb . 12
$\begin{gathered} 7.740 \mathrm{oz} . \\ 20 \end{gathered}$
$\begin{aligned} & 14.800 \text { pwt. } \\ & 24 \end{aligned}$
19.200 gr .

$.645 \mathrm{lb} .=\left\{\begin{array}{c}7 \mathrm{oz} .14 \mathrm{pwt} . \\ 19.2 \mathrm{gr} .\end{array}\right.$
.The Analysis and Rule for the preceding examples are essentially the same as in Art. 286.

Change the following to integers of lower denominations:
2. $\frac{5}{8} \mathrm{lb}$. Troy.
3. $\frac{3}{4}$ of a yd .
4. . 325 of $\mathrm{a} £$.
5. $\frac{5}{9}$ of a ch.
6. .125 of asq. yd.
7. $\frac{17}{16}$ of a fath.
8. $\frac{4}{8}$ of a week.
9. . 125 of a bbl. 10. $16 \frac{1}{16}$.
11. $\frac{4}{15}$ of a min.
12. $\frac{5}{7}$ of a bu.
13. . 55 lb . Avoir.
14. $\frac{7}{8}$ of a gal.
15. $\frac{1}{3 z}$ of a ream.
16. . 016 of a mi.
17. $\frac{4}{8}$ of a gross.
18. . $75 \% 5$ of a mi.
19. . 076 of a cu. yd. 28. . 21675 of a T.
292. To change integers of lower denominations to fractions of a ligher.

Mental Exercises.

1. What part of a gallon is 2 qt. 1 pt.?
analysis. Since there are 8 pt. in 1 gal., and 5 pt . in 2 qt .1 pt., 5 pt . are $\frac{5}{8}$ of a gallon $=.625 \mathrm{gal}$. Hence, etc.
2. What part of 2 yd . is 4 ft .6 in ? 1 yd .2 ft ?
3. What part of 3 lb . Troy is 1 lb .6 oz ? 2 lb .4 oz .?
4. Change 3 pk . to the decimal of 3 bu .; of 2 bu .3 pk . ?
5. What fraction of 2 da . are 12 hr .? 18 hr .? 36 hr ?
6. What part of 3 cords is 1 Cd .4 cd . ft.?

Written Exercises.

295. 296. What part or fraction of 1 pound is 10 oz .10 pwt .?
first operation.

The fraction in the result may be expressed in either the cornmon or decimal form, by Art. $\mathbf{2 1 5}$, or $\mathbf{2 1 6}$.
1. What part of 5 yd .1 ft . is 2 yd .2 ft .?

To find what part one compound number is of another, they must be like numbers, and reduced to the lowest denomination in either.

If there is a fraction in either of

OPERATION.

$$
\begin{aligned}
& 2 \mathrm{yd} .2 \mathrm{ft} .=8 \mathrm{ft} . \\
& 5 \mathrm{yd} .1 \mathrm{ft} .=16 \mathrm{ft} \text {. } \\
& \frac{8}{16}=\frac{1}{2}=.5
\end{aligned}
$$ the given numbers, it must be regarded as the lowest denomination.

The pupil may be required to write or give rules, when omitted for all operations.

What part of
3. 1 hhd . is 39 gal. 1 qt. 1 pt.? 16.1 T. is $11 \mathrm{cwt} .11 \mathrm{lb} .1 \frac{1}{8} \mathrm{oz}$.?
4. 1 cwt . is 4 i lb .8 .96 oz .? $1 \% .1 \mathrm{rd}$. is $14 \mathrm{ft} .5 \frac{1}{4} \mathrm{in}$. ?
5.1 lb . Avoir. is 14.4 oz ? 18.3 bu . is $3 \mathrm{pk} .7 \mathrm{qt} .1 \frac{1}{2} \mathrm{pt}$?
6. 1 da. is 10 hr .40 min .?
\%. 10s. is 2s. 6d.?
8. 5 yd .2 in . is 2 yd .1 ft .?
9. 2 A . is 96 P .?
10. 1 ream is 15 sheets?
11. 1 Cd . is $3 \mathrm{~cd} . \mathrm{ft} .13 \mathrm{cu} . \mathrm{ft}$.?
12. 1 T . is 5 cwt .64 lb ?
13. 1 lb . Troy is 7 oz .4 pwt. ? 14. £ 5 is '7s. 6d.?
15. 4 bu. is $1 \frac{3}{4} \mathrm{pk}$?

What fraction of
19. 1 bbl. is 3 gal. 3 qt. 1 pt.? 20. $£ 1$ is 14 s. 3 d. $1 \frac{5}{7}$ far. ?
21. 1 bu . is 1 pk . ${ }^{7} \mathrm{qt}$?
22. 1 cwt . is 96 lb .8 oz .?
23. 31 yd .1 ft .6 in . is 4 rd .?
24. 1 cir. is $8 \mathrm{~S} .7^{\circ} 30^{\prime}$?
25. 1 A. is 133 P. 11 sq. yd. ?
26. 2 T. 7 cwt . 28 lb . is 5 cwt .?
$27 . \mathrm{f} 弓 1$ is f 35 m 36 ?
28. 1 wk. 3 da. is 4 da. 9 hr .?
294. To find the sum of two or move denominate numbers, or denominate fractions.

The processes of adding, subtracting, multiplying, and dividing denominate numbers are based on the same principles that govern similar operations in simple numbers; the principal difference being, that deuominate numbers have an irregular scale of increase and decrease, while simple numbers have a uniform decimal scale.

The Operations and Explanations given will enable the pupil readily to form a rule for each.

Written Exercises.

295. 296. Find the sum of $9 \mathrm{yd} .2 \mathrm{ft} .10 \mathrm{in} ., 4 \mathrm{yd}$. $1 \frac{1}{2} \mathrm{ft}$., and $5 \frac{1}{2} \mathrm{yd}$.

Explanation. Write the numbers so that units of the same denomination stand in the same column. Commencing with the lowest denomination, add as in simple numbers. The sum of the inches is 22 in ., equal to 1 ft .10 in . Write the 10 in . under the column of inches, and add the 1 ft . to the col-
operation.

yd.	ft.	in.
9	2	10
4	1	6
5	1	6
19	2	10

In like manner, add the columns of feet and yards.
2. What is the sum of $\frac{4}{9}$ wk., $1 \frac{3}{5}$ da., .3 da., and .325 hr. ? operation.
Explanation. First find the value of each denominate fraction in integers of a lower denomination (291); then add the resulting compound numbers.
da. hr. min. sec.

$\frac{4}{8} \mathrm{wk}$.	$=3$	2	40
$1 \frac{3}{5} \mathrm{da}$.	$=1$	14	24
.3 da.	$=$	y	12
00	00		
.325 hr.	$=$		19
		30	

3. Add 7 T. $14 \mathrm{cwt} .25 \mathrm{lb} ., 14$ T. 9 cwt .16 lb .8 oz ., $36 \mathrm{cwt} .17 \mathrm{lb} ., 4$ T. 12 cwt ., and 5 cwt .10 lb .14 oz.
4. Find the sum of $12 \mathrm{wk} .3 \mathrm{da} .5 \mathrm{hr} .20 \mathrm{~min} .42 \mathrm{sec} .$, 4 da. $12 \frac{1}{2} \mathrm{hr} ., 3$ wk. 1 da. 10 hr .40 min ., and $16 \mathrm{hr} .36 \frac{1}{2}$ min.
5. Add 6 Cd .5 cd . ft., 3 Cd .6 cd . ft. $9 \mathrm{cu} . \mathrm{ft} ., 4 \mathrm{~cd}$. ft. $14 \mathrm{cu} . \mathrm{ft}$., and $5 \frac{3}{8} \mathrm{Cd}$.
6. What is the sum of $3 \mathrm{hhd} .26 \mathrm{gal} ., 42$ gal. $3 \mathrm{qt}$.1 pt ., 323 gal., 12 gal. 1 pt., and 18.75 gal. ?
7. How many acres in 3 fields, the first containing 16 A . 75 P., the second 26 A .45 P ., and the third 32 A .120 P . ?
8. How many units in $2 \frac{1}{2}$ gross $5 \frac{1}{3}$ doz., 6 gross $2 \frac{3}{4}$ doz., of 12 gross, 8.25 doz., and 7 doz. 9 units?

Find the sum of
9. $14.45 \mathrm{lb} ., 8 \frac{3}{4} \mathrm{oz} ., 3 \frac{3}{8} \mathrm{lb}$., and 5 lb .9 oz .8 .5 pwt . 10. $\frac{1}{4}$ wk., 8 da., .75 hr ., $\frac{2}{3}$ min., . 75 da., and 35 sec .
11. $6 . \% 5 \mathrm{~T} ., 4 . \% \mathrm{cwt}$., $\frac{1}{2}$ cwt., 24 lb ., and $21 \frac{5}{8} \mathrm{lb}$.
12. 玵 6394 , 解 $755 \frac{1}{2} 34$ Э23 , and $1 \mathrm{~b} 5 \frac{3}{8}$.
13. . 282 T. 96 cwt. 325 lb ., and $4 \frac{7}{20}$ cwt.
14. . $9 \mathrm{mi} . \frac{7}{8} \mathrm{rd} ., \frac{2}{3} \mathrm{mi} ., ~ .25 \mathrm{mi}$., and $25 \frac{3}{4} \mathrm{rd}$.
10. $4.8 \mathrm{bu} ., 2 \frac{5}{6} \mathrm{bu} . .8125 \mathrm{pk} ., 3 \mathrm{bu}$. $2 \frac{23}{4} \mathrm{pk}$., and $\frac{3}{8} \mathrm{bu}$.
16. What cost 3 loads of hay, the first weighing 1.375 T ., the second 14 T., and the third 2625 lb ., at $\$ 18$ a ton?
17. A farmer received $\$ 1.75$ a bushel for 4 loads of wheat. The first contained 36.8 bu., the second $42 \frac{2}{3}$ bu., the third 40 bu .45 lb ., and the fourth 2860 lb . What did he receive for the whole?
18. Three coal cars contain respectively $6.3 \% 5$ T., $5 \frac{7}{8} \mathrm{~T}$. , and 9520 lb . What was the value of the coal, at $\$ 6 \frac{1}{2}$ per long ton?

> WRITTEN EXERCISES.
296. To find the rifference between any two denominate numbers, or denominate fractions.

1. Find the difference between 8 lb .9 oz .12 pwt .14 gr . and 5 lb .2 oz .15 pwt .12 gr.

Explanation. Write the numbers so that units of the same denomination stand in the same column, and begin at the right to subtract.

Subtract 12 gr. from 14 gr ., and write the difference, 2 gr ., under the column of grains.

Since 15 pwt. cannot be taken from 12 pwt., take 1 oz . from the 9 oz ., leaving 8 oz. , and add it to the 12 pwt., making 32 pwt. 15 pwt. from 32 pwt. leaves 17 pwt., which write under the pennyweights.

Since 1 oz . was taken from 9 oz ., subtract 2 oz . from 8 oz ., and write the difference, 6 oz ., under the column of ounces. 5 ll . from 8 lb . leave 3 lb. , which write under the column of pounds.
2. From 告 mo. subtract .659 wk .

Explanation. First find the value of cach denominate fraction in integers of lower denomination (291); then find the difference between the resulting compound numbers.

OPERATION.
wk. da. hr. min. sec.

告 mo	$=3$
.659 wk.	$=$
	4 14 32 46 43.2 2 3 18 53 16.8

3. From 3 T. 15 cwt. 18 lb. take 1 T. 7 cwt. 9 lb .6 oz .
4. From 340 bu. 2 pk. 4 qt . take 116 bu .3 pk .6 qt .
5. From a cask containing 36 gal. 2 qt. of vinegar, 18 gal. 3 qt. 1 pt. was drawn. How much remained?

6 . From 25 mi .150 rd .12 ft . take $16 \mathrm{mi} .120 \mathrm{rd} .14 \frac{1}{2} \mathrm{ft}$.
7. From 145 A. 96 P. subtract 120 A. 105 P.

Find the difference between
8. 5.45 T . and 15.6 cwt .
a. $\frac{5}{8} \mathrm{wk}$ and $\frac{2}{15}$ da.
10. $3 \frac{1}{2} \mathrm{lb}$. Troy and $\frac{8}{9} \mathrm{lb}$. Troy.
11. $\frac{2}{3} \mathrm{mi}$. and . 7 rd.
12. Ib 5.75 and $\frac{105}{3} 10 \frac{5}{8}$.
13. 375 hr . and 44115 min .
14. $18^{\circ} 33^{\prime} 16^{\prime \prime}$ and $.715^{\circ}$. 15. $\frac{3}{4} \mathrm{rd}$. and 5 ft .6 in . 16. .976 A. and $\frac{3}{5}$ A. 1\%. . 8 bu. and 6 qt. 1 pt. 18. . 625 gross and $\frac{2}{3}$ doz. 19. 5.5 bbl . and $\frac{4}{3} \mathrm{hhd}$.
20. A merchant tailor sold cloth that cost him $£ 228$ 10s. 101 d. for $£ 3006 \mathrm{~s} .10 \mathrm{~d}$. What was his profit?
21. From a piece of land containing . 75 A., a piece was sold, containing 80 sq. rd. 140 sq . ft. 96 sq. in. ; how much remained?
22. From a bin containing 130 bu .1 pk .6 qt . of corn, $75 \mathrm{bu} .2 \frac{1}{4}$ pk. were sold; how much remained unsold?
23. From 1 gross of steel pens, 7 doz. 10 pens were sold; how many were left?
24. From a nile of wood containing $124 \frac{5}{8}$ cords, was sold at one time $32 \frac{1}{2} \mathrm{Cd}$., at another 24 Cd . $5 \mathrm{~cd} . \mathrm{ft}$., and at another $28 \frac{9}{16} \mathrm{Cd}$. ; how much remained ?

29'. To find the time between two dates.

1. What length of time elapsed from 2 o'clock P. M. . Sept. 4, 1862, to 10 o'clock A. M., April 15, 1880 ?

Explanation. Write the later date for the minuend, and the earlier for the subtrahend, giving the month $\quad \begin{array}{lllll}1880 & 4 & 15 & 10\end{array}$ its number instead of the name. Usually, 12 mo . are reckoned as a year, and 30 da . a month. But to be

Operation.			
yr.	mo.	da.	ir.
1880	4	15	10
1862	9	4	14
17	7	10	20

Find the time
2. From May 12, 1848, to June 1, 1860.
3. From June 1, 1861, to Oct. 20, 18\%2.
4. From April 1, 1875, to August 16, 1879.
5. From May 10, 1878, to 3 o'clock p. м., Nov. 4, 1881.
6. Money borrowed July 9, 1877, was paid June 26, 1879. How long was it kept?
7. The American civil war began April 11, 1861, and closed April 9, 1865. How long did it continue?
8. How long has a note to run that is dated May 20, 18\%6, and made payable Sept. 12, 1880 ?
9. How many years, months, and days from your birthday to this date ; or what is your age?
10. A note dated July 15, 1879, was paid May 21, 1882 ; how long did it run?
11. I started on a tour around the world at 10 o'clock A. M., Aug. 8, 1879, and returned to the same depot at 4 o'clock p. m., May 10, 1881. How long was I absent?
12. The construction of the Brooklyn Suspension Bridge was commenced Jan. 3, 1870, and opened for travel July 4, 1882. How long was it in building?
298. To multiply a denominate number by an abstract number.

1. Multiply 7 bu. 2 pk. 6 qt. 1 pt. by 6.

Explanation.-Write the multiplier under the lowest denomination of the multiplicand, and multiply as in simpie numbers. Thus, 6 times 1 pt . are 6 pt., equal to 3 qt. Write a cipher
operation.
7 bu. 3 pk. 6 qt. 1 pt. 6
47 bu. 2 pk. 7 qt. 0 pt. under the pints, and raserve the 3 qt . to be added to the product of quarts. 6 times 6 qt . are 36 qt ., and 3 qt . added make 39 qt ., equal to 4 pk . and 7 qt . Write the 7 qt . in the product under the quarts, and reserve the 4 pl. to be added to the product of pecks. Proceed in the same manner with each denomination until the entire product is found.

When the multiplier is large and a composite number, multiply successively by its factors. (81.)
2. Multiply 5 lb .8 oz .10 pwt . by 6 ; by ${ }^{77}$; by 8 .
3. Multiply ${ }^{7}$ T. 12 cwt . 10.5 lb . by 8 ; by 9 ; by $\%$.
4. How many bushels of corn will 12 A . produce, if 1 A . yield 38 bu. 2 pk. 6 qt.?
5. What is the weight of 2 doz . spoons, if each spoon weighs 3 oz. 12 pwt. 15 gr.?
6. How much land in 5 farms, each farm divided into 8 fields, and each field containing 12 A. 120 P.?
\%. Find the weight of 32 carloads of coal, by the long ton, each weighing 5 T. 7 cwt .2 qr. 24 lb .10 oz.
8. If 1 hh . of sugar weighs 6 cwt .28 lb ., what is the weight of 8 hhd., and their value, at 9 cts a pound ?

Find the product in integers of lower denominations of
9. $5 \frac{7}{8} \mathrm{~A}$. by 16 .
10. $\frac{5}{8} \mathrm{mi}$. by 9 .
11. 8.125 pk . by 24.
12. $6 \frac{1}{5} \mathrm{lb}$. Troy by 36.
13. 8.84 T. by . 9.
14. 2 da. 9.48 hr . by 42.
15. 7.125 cwt . by 1.6.
16. $4 \frac{5}{8} \mathrm{hhd}$. by 15.
17. 5.2 wk. by 28.
18. 2 bu .2 .45 pk . by 10 .

299. To divide a denominate number into equal

 parts.1. Divide 47 bu .3 pk .6 qt. by $\%$.

Explanation.-Write the divisor at the left of the dividend, and proceed to find one seventh of the given number. Thus, $\frac{1}{8}$ of 47 bu . is 6 bu . and a remainder
operation.
r) 47 bu. 3 pk .6 qt .

6 bu. 3 pk. $3 \frac{1}{7}$ qt. of 5 bu . Write the 6 bu . in the quotient, and reduce the 5 bu . to pecks, which added to 3 pk . make 23 pk . $\frac{1}{8}$ of 23 pk . is 3 pk . and a remainder of 2 pk . Write the 3 pk . in the quotient, and reduce the 2 pk . to quarts, which added to 6 qt. make 22 qt . $\frac{1}{2}$ of 22 qt . is $3 \frac{1}{7} \mathrm{qt}$., which write in the quotient.
2. Divide 15 lb .9 oz .12 pwt . $1 \% \mathrm{gr}$. by 4 ; by 6 ; by 8 .
3. Divide 3 T. 12 cwt. 14 lb .13 oz. by 3 ; by 9 ; by 7.

5. Divide 1946 gal. 3 qt. 1 pt. by 35 ; by 42.

When the divisor is large and a composite number, the work may be shortened by dividing successively by its factors. (103.)

Find the result
6. Of 31 hhd. 4 gal. $3 \mathrm{qt} \div .5 . \mid$ 11. Of $70 \mathrm{mi} .40 \mathrm{rd} .3 \mathrm{yd} . \div 6$.
\%. Of $£ 6614 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d} . \div \%$
8. Of 336 A. $144 \mathrm{P} . \div 12$.
9. Of $635 \mathrm{Cd} .2 \mathrm{~cd} . \mathrm{ft}_{0} \div 8$.
10. Of $53^{\circ} 16^{\prime} 12^{\prime \prime} \div 18$.
12. Of $23 \mathrm{cu} . \mathrm{yd}$. ${ }^{7} \mathrm{cu}$. ft. $\div 4$.
13. Of 12 wk .3 da. $21 \mathrm{hr} . \div 11$.
14. Of 6 yd. $2 \mathrm{ft} .3 \mathrm{in} . \div 9$.
15. Of $£ 9816 \mathrm{~s} . \div 24$.
16. Bought 12 spoons, weighing 1 lb .10 oz .6 pwt ; what was the weight of each spoon?

1\%. A town containing 16 sq . miles was equally divided into 120 farms. What was the size of each farm?
18. From the sum of 61 gal. $3 \mathrm{qt}$.1 pt ., and 36 gal. 1 pt., take 28 gal. 2 qt., and divide the result by 18 ; by 24 ; by 30 .
19. In excavating a cellar $3240 \mathrm{cu} . \mathrm{ft}$. of earth was removed by 3 men in 8 days. How many cubic yards did each man remove daily?
20. How many times is $£ 51$ s. 8 d. contained in $£ 258$ s. 4 d.?

Reduce both dividend and divisor to the same denomination ; then divide as in simple numbers.
21. How long will 5 bu. 2 pk. 4 qt . of oats feed a horse, if he eats 1 pk .4 qt . a day? If 1 pk .6 qt .?

300. The Meridian of any place is an imaginary line passing from the North Pole to the South Pole through that place.
301. The Longitude of any place is its distance east or west from some assumed meridian.

The English and Americans usually reckon longitude from the meridian of Greenwich, England.

Since the earth turns upon its axis once in 24 hours, it follows that $\frac{1}{25}$ of 360°, or 15° of longitude passes under the sun in 1 hr ., and $\frac{1}{80}$ of 15°, or 15^{\prime}, passes under the sun in 1 min ., and $\frac{1}{6^{\circ} \circ}$ of 15^{\prime}, or $15^{\prime \prime}$, passes under the sun in 1 sec . of time. Hence, the following

Table of Equivalents.

A difference of

15°	in Long.	produces
15^{\prime}	،	"
$15^{\prime \prime}$	"	6
1°	"	،
$1{ }^{\prime}$	6	"

A difference of
1 hr . in Time.
1 min. "
1 sec . "
4 min. "
4 sec . "

As the earth revolves from west to east, places east of a given meridian have midday sooner, and are said to have earlier, or faster time, because the sun appears to them earlier ; and for similar reasons places west are said to have later or slover time.

Mental Exercises.

1. When it is noon in New York, what is the hour 15° west of N. Y.? 30° east of N. Y.? $30^{\circ} 30^{\prime}$ west of N. Y.?
2. The difference of time between New York and Washington is 12 min . 15 sec . What is their difference of iongitude?
3. A man left Chicago, and traveled until the local time was 12 min . slow by Chicago time. Through how many degrees of longitude did he travel? Was he then east or west of the meridian of Chicago?
4. A man left Columbia, Mo., and traveled until the local time was 1 hr .12 min . fast by Columbia time. Through how many degrees of longitude did he travel? Was he then east or west of the meridian of Columbia?
5. What is the difference of time between two places whose difference of longitude is 95° ?
6. When it is noon at Chicago, is it before noon or after noon at places eastward? At places westward?
\%. A and B, located at different points, observe the beginning of an eclipse of the moon. By A's time the eclipse begins at 10 p. м., and by B's at $12 \mathrm{hr} .15 \mathrm{~min} . \mathrm{A}$. m. What is their difference of longitude, and which is west of the other?
7. The longitudes in the following table are estimated from the meridian of Greenwich :

Albany, ${ }^{\prime \prime} 3^{\circ} 44^{\prime} 48^{\prime \prime}$ W.
Berlin, $13^{\circ} 23^{\prime} 44^{\prime \prime}$ E. Boston, " $7^{\circ} 3^{\circ} 30^{\prime \prime} \mathrm{W}$. Bombay, $72^{\circ} 54^{\prime} 0^{\prime \prime}$ E. Columbia, Mo.,92 ${ }^{\circ} 19^{\prime} 31^{\prime \prime}$ W. Chicago, $87^{\circ} 36^{\prime} 42^{\prime \prime} \mathrm{W}$. London, $0^{\circ} 5^{\prime} 0^{\prime \prime} \mathrm{W}$. Mexico, $99^{\circ} 6^{\prime} 39^{\prime \prime} \mathrm{W}$. Montreal, $73^{\circ} 25^{\prime} 0^{\prime \prime} \mathrm{W}$. New Orleans, $90^{\circ} \mathrm{W}$.

New York, ${ }^{\prime 2} 3^{\circ} 59^{\prime} 9^{\prime \prime} \mathrm{W}$.
Omaha, $96^{\circ} \mathrm{W}$.
Paris, $2^{\circ} 20^{\prime} 9^{\prime \prime} \mathrm{E}$.
Pekin, $116^{\circ} 0^{\prime} 28^{\prime \prime}$ E.
Philadelphia, ${ }^{7} 5^{\circ} 9^{\prime} 3{ }^{r \prime \prime}$ W.
Rome, $12^{\circ} 28^{\prime} 26^{\prime \prime}$ E.
San Francisco, $122^{\circ} 24^{\prime} 40^{\prime \prime} \mathrm{W}$.
St. Louis, $90^{\circ} 12^{\prime} 1^{\prime \prime \prime} \mathrm{W}$.
St. Petersburg, $30^{\circ} 18^{\prime} 23^{\prime \prime}$ E.
Washington, $77^{\circ} 3^{\prime} 1^{\prime \prime} \mathrm{W}$.

Written ExERCISES.

303. To find the difference of time in two places, when their lougitudes are given.
304. Find the difference in the time of Boston and St. Louis.

operation.			
90°	12^{\prime}	$17^{\prime \prime}$	Long. of St. Louis.
${ }^{7} 1^{\circ}$	3^{\prime}	$30^{\prime \prime}$	" "Boston.
15) 19°	8^{\prime}	$47^{\prime \prime}$	Difference of longitude.
			Difference of time.

Explanation. Since 15° of longitude correspond to 1 hr . of time, 15^{\prime} of longitude to 1 min . of time, and $15^{\prime \prime}$ of longitude to 1 sec of time, it follows that there are $\frac{1}{15}$ as many hours, minutes, and seconds of time as there are degrees, minutes, and seconds of longitude.
2. When it is 2 o'clock p. m. at New York, what is the time at Berlin?
operation.

${ }^{7} 3^{\circ}$	59^{\prime}	9 "	W. Long. of New York.
13°	23^{\prime}	$44^{\prime \prime}$	E. " " Berlin.
15) 87°	22^{\prime}	$53^{\prime \prime}$	Difference of longitude.

Explanation. The time at Berlin being faster, the difference must be added to New York time. Hence, the time at Berlin will be 49 min . 32 sec . past 7 o'clock P. м.
If the given places are both in east, or both in west longitude, the difference of longitude is found by subtracting the less from the greater; if one is in east, and the other in west longitude, the difference is found by adding the longitudes.

Rule. Divide the difference of longitude, expressed in degrees, etc., by 15. The quotient will express the difference in time in hours, minutes, and seconds.

Using the table (302), find the difference in time between
3. Albany and Boston.
4. N. Y. and San Francisco. 6. London and New York.

When it is noon at Washington, what is the time

7. In Chicago?	9. In Mexico?	11. In London?
8. In San Francisco?	10. In Paris?	12. In Pekin?

304. To find the difference of longitude between any two places, when the lifference in time is known.
305. When it is 9 o'clock at Boston, it is 34 min .34 sec . past 5 o'clock at San Francisco. Find the difference in longitude.

Explanation. There are 15 times as many degrees, min., and sec. in the difference of longitude as there are hr., min., and sec. in the differonce of time.

Rcle. Multiply the difference of time between the two places, expressed in hours, minutes, and seconds, by 15; the product will be the difference in longitude in degrees, etc.

Find the difference in longitude between two places, the difference in their time being
2. 4 hr .46 min .
3. 1 hr .25 min . 4. 2 hr .25 min .30 sec .
5. 3 hr .10 min .25 sec .

In what longitude from Washington is a place whose timc compared with that of Washington is
6. 1 hr .20 min . earlier ?
\%. 56 min . later?
8. 2 hr .30 min . later?
9. 3 hr .15 min . earlier?

Revitew

305. 306. What cost 45 bu .3 pk .1 qt . of wheat, at $\$ 1 .{ }^{7} \%$ a bushel?
1. How many centals of wheat can I purchase for $\$ 150$, at $\$ 1.25$ a bushel ? At $\$ 1.60$? At $\$ 1.84$?
2. How many bushels of barley in California are equal to 540 bu. in New York? To 350 bu. in Mass. ?
3. If I exchange hay at $\$ 16$ a ton, for flour at $\$ 7.60$ a barrel, how many barrels of flour will 3 T . of hay purchase?
4. A ship sailed due north 31.4 degrees. How far did she sail in statute miles?
5. From a pile of wood containing 960 cu . ft., was sold at one time $3 \frac{1}{4} \mathrm{Cd}$., at another $2 \frac{5}{8} \mathrm{Cd}$. What was the remainder worth, at $\$ 4 \frac{1}{4}$ a cord ?
\%. What cost 5 T .80 lb . of liay, if 3 T .12 cwt .20 lb. cost $\$ 15 \frac{3}{4}$?
6. If $\$ 1052.10$ was paid for ${ }^{7} \mathrm{~T}$. of cheese, and the same was retailed at 10 cents a pound, what was the profit?
7. At 10 o'clock A. m. in New York, what is the time in Paris? In London? In New Orleans? In Mexico?
8. What is the cost of 35000 lb . of salt at the New York salt works, at $\$ 1.84$ a barrel?
9. Wishing to travel in Great Britain, I exchange $\$ 1500$ for English money. How many pounds should I receive?
10. What will 25 T. 6 cwt. 3 qr. 10 lb . of coal cost, at $\$ 6.40$ the long ton?
11. At the rate of 17 mi .300 rd . a day, in what time would a man walk 188 mi .110 rd ?
12. How many duodecimo volumes, using 10 sheets to a volume, can be printed on 33 reams 7 quires 12 sheets of paper?
13. At the rate of 45 bu .3 pk .6 qt .1 pt . of grain to the acre, what will 48 acres produce?
14. Received from the mint a bag of gold, weighing 2 lb . $6 \mathrm{oz} .1^{17}$ pwt. 12 gr . What was its value, the weight of $\$ 1$ being 25.8 gr. ?
15. From $\frac{4}{5} \mathrm{lb} .+4 \frac{5}{6} \mathrm{oz} .+31 \frac{1}{3} \mathrm{pwt}$. take (${ }_{5}^{3} \mathrm{oz} .-\frac{7}{8} \mathrm{pwt}$.).
16. Bought 24 T. 4 cwt. 1 qr. 18 lb . of English iron, at 3 d . a pound, long ton weight, and sold the same at $\$ 142$, by the short ton; what was gained by the transaction?

Find the result
19. Of $\frac{7}{8} \mathrm{mi} .+\frac{2}{3} \mathrm{yd} .+\frac{3}{4} \mathrm{ft} .-\frac{2}{3} \mathrm{rd}$.
20. Of $5 \times\left(\frac{4}{5} \mathrm{mo} .+\frac{3}{5} \mathrm{da} .-.659 \mathrm{wk}\right.$. $)$.
21. Of $\frac{7}{13}$ hhd. $-.125 \mathrm{bbl} . \mid 23$. Of $\frac{4}{5}$ of $8 \frac{3}{8} \mathrm{Cd} .-\frac{5}{16} \mathrm{Cd}$.
22. Of . 31 bu . - $\frac{7}{12} \mathrm{pk}$. 24. Of $\frac{3}{8}$ of $3 \frac{2}{3} \mathrm{~A}$. -. 625 A .

Find the cost of the following quantities, at the price per unit named:

Ex.	Quantity	Price.	Per.	Ex.	Quantit	Price.	Per.
25.	125	\$12.00	cwt.	40.	5 hhd. 20 gal.	0	gal.
26.	26 cwt .	. 25	1 l .	41.	$4 \mathrm{Cd} .6 \mathrm{cd.ft}$.	. 54	a. ft.
27.	432 bu	40	pk.	42.	12 bbl 16 gal .	36.00	hhd.
23.	650 qt.	1.20	bu.	43.	16 cwt .	75.00	
29.	$328 \mathrm{qt}$.	375	gal.	44.	$2{ }_{8}^{1} \mathrm{sq}$. mi.	40	sq. rd.
30.	$96 \mathrm{cd.ft}$	3.125	cord.	45.	270 sq.	12.00	sq. yd.
31.	84 cords.	24	cu. ft.	46.	54 gal .	62.50	hhd.
32.	640 sq. rd.	45.00	A.	47.	4 bbl 10 gal .	. 06	
33.	15 75.	.121	3.	48.	$14 \frac{2}{2}$ reams.	. 30	quire.
34.	112 A.	4.50	sq. rd.	49.	$15 \frac{1}{2}$ doz.	10	gross.
35.	140 gross.	25	doz.	50.	124.3 yd .	2.75	
36.	860 sheets.	3.00	m.	51.	12.75 lb .	45	pwt.
37.	114 sq. rd.	. 75	sq. ft.	52.	3 pk .6 qt .	4.00	bu.
38.	1040 pwt.	21.621	1 lb .	53.	15 436.	25	3.
39.	Cong. 5.			54	36.25 sq.		

306. Practical Applications of measures to the mechanic arts, and to the common business of life.

MEASURES OF REC'TANGULAR SURFACES.

30\%. A Surface has length and breadth, without thickness.
308. A Rectangle is any plane figure bounded by four straight lines, and having four right-angles.

When all its sides are equal it is called a Square.
309. The Unit of Measure of any surface is a square, whose side is some known unit.

Thus, the unit of measure for square inches is $1 \mathbf{s q}$. in ; ; for square feet, 1 sq . ft.; for square yards, 1 sq . yd., etc.
310. The Area of a rectangle is expressed by the product of the length and the breadth, or by the number of times it contains a given unit of measure.

Thus, the figure represents a rectangle 4 inches long and 3 inches wide, and 1 square inch is the unit of measure. The area is 3 times 4 square inches, or 12 square inches.

Formulas for Rectangles.
311. 1. Length \times Breadth $=$ Area.
2. Area \div Length $=$ Breadth.
3. Area \div Breadth $=$ Length .

The two given dimensions must be expressed in units of the same denomination.

WRitten Exercises.

312. Find the area of rectangles of the following dimensions:
313. 26 in . by 18 in .
314. 44 ft . by 20 ft .
315. $12 \frac{1}{2}$ feet square.
316. 45 ft .6 in . by 12 ft .9 in .
317. 9.5 ch . by 4 ch .2 rd .
318. 8.5 yd . by 9 feet.
\%. How many square feet in a blackboard 22 ft . long and 3 ft . wide?
319. How many sq. rods in a garden 279 ft . long and 180 ft . wide?
320. How many square yards in the walls of a room 16 ft . long, 12 ft .6 in . wide, and 10 ft .4 in . high ?
321. What is the width of a room 24 ft . long, the floor containing 444 square feet?
322. If the width of the room is 12 ft ., what is the length ?

Find the number of yards in length, and the cost, of carpeting sufficient to cover the floors of rooms of the following dimensions:
12. A room 18 ft . by 16 ft .6 in .; carpet 1 yd . wide, at \$. 90 .
13. A rcom 24 ft . by 36 ft .; carpet 28 in . wide, at $\$ 1.50$.
14. A room $13 \frac{2}{3} \mathrm{ft}$. square ; carpet 30 in . wide, at $\$ 1.84$.
15. A hall $42 \frac{1}{2} \mathrm{ft}$. by 8.4 ft .; carpet $\frac{7}{8} \mathrm{yd}$. wide, at $\$ 2 \frac{1}{8}$.
16. How many yards of Brussels carpet, $\frac{3}{4}$ yd. wide, will be required to carpet a parlor 38 ft . by $18 \mathrm{ft}$.4 in ., and what will be the cost, at $\$ 2.75$ a yard?
17. What will it cost to cement a cellar bottom 42 ft .6 in , long and 36 ft . wide, at $\$.38$ a square yard ?
18. What will be the cost of slating a roof 48 ft . long and 36 ft . wide, at $\$ 12.62 \frac{1}{2}$ a square? A roof 32 ft .6 in . long and 24 ft . wide, at $\$ 9.80$ a square ?
19. How many flagstones, 2 ft . by 1 ft .3 in., will be required to flag a walk 250 ft . long and $4 \mathrm{ft}$.6 in . wide; and what will be the cost, at $\$ 2 \frac{1}{2}$ a sq. yard ?
20. How many acres in a field that is 210 ch . long and 50 ch. wide ?
21. A rectangular piece of land contains $20 \mathrm{~A} .120 \mathrm{sq} . \mathrm{yd}$., and the breadth is $8 \mathrm{ch}$.25 l ; what is the length?
22. What part of an acre is a piece of land 121 yd . long and 75 ft . wide?
23. A field 160 rd . long contains 3 A A.; what is its width?
24. How many acres in a field 130 rods square?
25. How many sods, 1 ft .4 in . square, will cover a yard 50 ft . long and 21 ft .4 in . wide?
26. How many planks, 12 ft . long by 1 ft .6 in ., will floor a room 30 ft .6 in . long and 24 ft . wide ?
27. How many yards of silk, $\frac{7}{8} \mathrm{yd}$. wide, will line 18 yd . of velvet, $\frac{1}{2} \mathrm{yd}$. wide? $\frac{5}{8} \mathrm{yd}$. wide?
28. What will be the cost of glazing 6 windows, each 8 ft . 4 in. by 3 ft .6 in., at $\$.90$ a square foot?
29. What will be the cost of plastering a room 21 ft .6 in . by 16 ft ., and 9 ft . high, at $\$.35$ a square yard, allowing 225 sq. ft. for doors, windows, etc. ?
30. A field containing 16 A .14 P . is 16.5 ch . long; what is its width, and how many rods of fence will enelose it?

MEASURES OF RECTANGULAR SOLIDS.

313. A Solid has length, breadth, and thickness, or height.
314. A Rectangular Solid is a body bounded by six rectangular surfaces, called Faces.

If all the faces of a rectangular solid are equal, it is called a Cube.

315. The Unit of Measure of any solid is a cube whose edge is some known unit.

Thus, the unit of measure for cubic inches is $1 \mathrm{cu} . \mathrm{in}$. ; for cubic feet, is 1 cu . ft.; for cubic yards, $1 \mathrm{cu} . \mathrm{yd}$., etc.
316. The Contents or Volume of a rectangular solid is expressed by the product of the length, breadth, and height, or by the number of times it contains a given unit of measure.

Thus, the figure represents a rectangular solid 6 in . long, 4 in . wide, and 3 in . high, and 1 cu . in. is the unit of measure. The lower face or base contains 24 sq. in. (310) ; hence, if the solid is 1 in . high,
 it would contain 24 cu in. But the solid is 3 in . high ; hence, it contains 3 times 24 cu . in., or 72 cu . in.

Formulas for Rectangular Solids.

31\%. 1. Length \times Breadth \times Height $=$ Volume .
2. Volume $\div($ Length \times Breadth $)=$ Height.
3. Volume $\div($ Length \times Height $)=$ Breadth .
4. Volume $\div($ Breadth \times Height $)=$ Length.

The three given dimensions must be expressed in units of the same denomination.
318. Masonry is ordinarily estimated by the cubic foot, or by the perch ; also, by the square foot or square yard of surface.

1. Excavations and embankments are estimated by the cubie yara $\vec{a}_{\text {o }}$ called a load.
2. Brickwork is usually estimated by the thousand bricks; sometimes in cubic feet.
3. If the average size of a common brick is $8 \times 4 \times 2 \mathrm{in}$., for ordinary calculation it is sufficiently accurate to reckon 27 bricks to the cubic foot, iaid dry, or 20 bricks laid in mortar.
4. An allowance of from $\frac{1}{10}$ to $\frac{1}{8}$ of the solid contents of a wall is made for the mortar.
5. In estimating material, allowance is made for doors, windows, and corners ; but in estimating the work, the measure is usually taken on the outside of walls, and no allowance made for doors, windows, and corners, unless by special contract.
6. A Perch of masonry is $16 \frac{1}{2} \mathrm{ft}$. long, $1 \frac{1}{2} \mathrm{ft}$. wide, and 1 ft . high, and contains $24.75 \mathrm{cu} . \mathrm{ft}$.
7. To find the number of perches in a wall.

Divide the contents in cubic feet by $24 \frac{3}{4}$.
320. To find the number of common bricks in a wall.

Multiply the contents in cubic feet by 20.

WRITTEN EXERCISES.

321. 322. How many feet in a rectangular solid 8 ft . long, 3 ft . wide, and 2 ft . high ?
1. What is the volume of a solid 6 ft .4 in . long, 4 ft .6 in . wide, and 3 ft . high ?
2. How many cubic yards of earth must be removed in digging a reservoir 45 ft . long, 36 ft . wide, and $6 \frac{1}{2}$ feet deep?
3. How many cubic feet of air in a room 18 ft . long, 16 ft .8 in . wide, and 9.5 ft . high ?

5 . Find the volume of a solid 12.5 ft . long, the end of which is 3 ft .9 in . square.

Find the contents of rectangular solids of the following dimensions:
6. 10 in . by 3 in . by $6 \frac{1}{2} \mathrm{in}$. 7. 45 ft . by 6 ft . by 15 ft .
8. $8 \frac{2}{3} \mathrm{yd}$. by $4 \frac{1}{2} \mathrm{ft}$. by 3.25 ft .
9. 4 yd . by $6 \frac{1}{4} \mathrm{ft}$. by 10 in .
10. Of a cube whose edge is 1 yd .2 ft .6 in .

Find the third dimension of rectangular solids, the volumes and two dimensions being as follows:
11. Volume, 108 ft . ; length, 9 ft . ; width, 4 ft .
12. Volume, 221 ft . ; width, 6 ft . ; height, 4 ft .4 in.
13. Volume, 310 ft . ; length, $40 \mathrm{ft} .$, width, 31 ft .
14. What will be the cost of digging a cellar 40 ft . long, 36 ft . wide, and 6 ft .6 in . deep, at $\$.50 \mathrm{a} \mathrm{cu}$. yd. or load?
15. How many perches of masonry in a wall 6 ft . high and 2 ft . thick, enclosing a garden 10 rods long and 8 rods wide?
16. What is the volume of a bin, the inside dimensions of which are 8 ft .3 in . long, 4 ft .6 in . wide, and 3 ft . deep?

1. A Cord of wood, stone, etc., is a pile 8 ft .long, 4 feet wide, and 4 feet high.

2. A Cord Ft.

 is 1 ft . in length of such a pile, or $\frac{1}{8}$ of a cord.
17. How many cords of wood in a pile 44 ft . long, 8 ft . - wide, and 5 ft. high ?
18. At $\$ 3.50$ a cord, what is the value of a pile of wood 3 ft . long, 8 ft . wide, and 6 ft . high ? If it were 8 ft . high ?
19. How many perches of stone, laid dry, will build a wall 240 ft . long, 8 ft .9 in . high, and 2 ft .3 in . thick?
20. Find the cost of excavating and walling a cellar 42 ft . 6 in . long, 34 ft . wide, $6 \frac{1}{2} \mathrm{ft}$. deep, the wall to be 18 in . thick; the excavating will cost 40 cents a load, and the mason work $\$ 4$ a perch.
21. How many bricks will be required to build a wall 124 ft . long, 6 ft . high, and 1 ft .6 in . thick ?
22. How many bricks of average size will be requirèd to build a house 54 ft . long, 27 ft . wide, and 24 ft . high, the wall being 13 in . thick, allowing 256 sq . ft. for doors and windows; and what will be their cost at $\$ 7 \frac{1}{2}$ per M . ?
322. A Board Foot is 1 ft . long, 1 ft . wide, and 1 in . thick, and 12 such board feet make $1 \mathrm{cu} . \mathrm{ft}$. Hence,

To change board feet to cubic feet, divide by 12 ; and to change cubic feet to board feet, multiply by 12 .

1. In the lumber business, all boards are assumed to be 1 in . thick, and for every additional $\frac{1}{4} \mathrm{in}$. in thickness the price is increased one fourth. Thus,
1600 sq. ft., 1 in. thick or less $=1600 \mathrm{ft}$. board measure. 1600 sq. ft., $1 \frac{1}{4} \mathrm{in}$. thick $=2000 \mathrm{ft}$. " " 1600 sq. ft., 2 in. thick $=3200 \mathrm{ft}$. " "
2. Lumber and suwed timber are usually estimated in board measure, and quoted by the hundred or thousand square feet.
3. When a board tapers uniformly, the average width is equal to one half the sum of the two ends.
I. To find the contents of a board:

Multiply the length in feet by the width in inches, and divide the product by 12.
II. To find the contents of a plank, joist, etc.:

Multiply the length in feet by the width and thickness in inches, and divide the product by 12.

1. Find the number of board feet in a board 16 ft . long and 9 in . wide.

Operation. $\overline{16 \times 9} \div 12=12$ board feet.
2. How many board feet in a plank 14 ft long, 12 in . wide, and $3 \frac{1}{2}$ in. thick?

Operation. $\overline{14 \times 12 \times 3 \frac{1}{2}} \div 12=49$ board feet.
Find the contents of boards, measuring:
3. 16 ft. by $14 \mathrm{in} . \mid 6.23 \mathrm{ft}$. by $1 \mathrm{ft} .6 \mathrm{in} . \mid 9.26 \mathrm{ft}$. by 2 ft.
4. 18 ft . by 15 in . 7.24 ft . by $16 \frac{1}{2} \mathrm{in} . \quad 10.19 \mathrm{ft}$. by 1 ft . 5. 21 ft . by 20 in .8 .16 ft . by $12 \frac{3}{4} \mathrm{in}$. 11. 22 ft . by 2 ft .
12. Find the contents of a board 18 ft . long, 1 ft .4 in . at one end, and 10 in . at the other.

Find the cost of the following:
13. Of 40 boards 14 ft . long, 9 in . wide, at $\$ 2.75$ per C.
14. Of 8 planks 12 ft . long, 14 in . wide, and 3 in . thick, at $\$ 15$ per M.
15. Of 36 scantling 9 ft . long, 4 in . by 3 in., at $\$ 2 \frac{1}{4}$ per C .
16. Find the cost of flooring a two-story house, the floors 'being 48 ft . by 40 ft ., and the plank $1 \frac{1}{2} \mathrm{in}$. thick, at $\$ 35$ per M., no allowance being made for waste.

1\%. How much lumber 1 in . thick will be required to make a bin which, on the outside, shall be 6 ft . long, 4 ft . 6 in. wide, and 3 ft. 3 in. high ?
18. What is the cost of 356 fence boards, 16 ft . long, and 8 in. wide, at $\$ 12$ per M. ?
19. What will be the cost of 4 sticks of timber 32 ft . long, 10 in . by 14 in ., at $\$ 1.60$ per hundred feet, board measure?

CAPACITY OF CISTERNS, BINS, Etc.

The liquid and dry measures of the same denomination are of different capacities.
323. Comparison of Measures of Capacity.

Liquid measure,	231	$57 \frac{3}{4}$	$28 \frac{7}{8}$	$7 \frac{7}{32}$		
Dry measure ($\frac{1}{2}$ pk.),	.	.	$268 \frac{4}{5}$	$67^{\prime} \frac{1}{5}$	$33 \frac{3}{5}$	$8 \frac{2}{5}$

1. A cubic foot of pure water weighs $1000 \mathrm{oz} ., 62 \frac{1}{2} \mathrm{lb}$. Avoir.
2. The Standard Bushel of the United States contains 2150.42 cu. in.
3. In measuring grain, seeds, or small fruits, the measure must be stricken, or even full. In measuring bulky fruits and vegetables, as apples, potatoes, etc., the measure should be heaped.
4. Four heaped measures are considered as equal to five stricken measures.
5. Six $d r y$ quarts are considered equal to nearly 7 liquid quarts.
6. A quarter, containing 8 U . S. bushels, or a ton, containing $33 \frac{1}{3}$ U. S. bushels, is used in shipping graii from New York.
I. To find the capacity of a vessel in gallons:

Divide the contents in cubic inches by 231 for liquid, or by 268.8 for dry gallons.
II. To find the cubic inches in a given number of gallons:

Multiply the given number of liquid gallons by 231.
III. To find the capacity of a bin in bushels:

Divide the contents in cubic inches by 2150.42.
IV. To find the cubic contents in a given number of bu.:

Multiply the number of bushels by 2150.42 ; the product will be the number of cubic inches.

For all practical purposes, any number of cubic feet, diminished by $\frac{1}{5}$, will represent their equivalent in bushels; and any number of bushels, increased by $\frac{1}{4}$, will represent their equivalent in cubic feet.

Written Exercises.

324. 325. How many more cubic inches in $164 \frac{1}{2}$ dry gallons than in $164 \frac{1}{2}$ liquid gallons?

How many cubic feet in a space that holds
2. 1500 bushels?
3. 450 bu .3 pk ?
4. 60 hh . of water ?
8. What is the capacity of a cistern in hhd., the depth being 5 ft . $7 \frac{3}{8}$ in., and the bottom 8 ft . by 6 ft .?
9. How many barrels of water will a vat hold that contains 58212 cubic inches?
10. How many bushels of oats can be put in a bin 10 ft . by 6 ft . by 5 ft .?
11. A bin holds 148 bu . of wheat; what is its volume in cubic feet?
12. A bin 15 ft . by 6 ft . by 4 ft . 6 in . will hold how many bushels of barley? Of potatoes?
13. A tank in the attic of a house is 8 ft . by 6 ft . by 2 ft . How many gallons of water will it hold, and what will be the weight of the water?
14. A vat that will hold 3000 gallons of water will hold how many bushels of corn?
15. A man bought 8 bu. of hickory nuts, at $\$ 3$ a bushel, dry measure, and retailed the same at 15 cents a quart, liquid measure. What was his gain?
16. How many bushels of wheat will fill an empty hhd.?
17. How many tons of ice can be packed in an ice-house, 30 ft . by 15 ft . by 12 ft ., a cubic foot of ice weighing $58 \frac{1}{8} \mathrm{lb}$. ?
18. A California farmer put his entire harvest of barley into a bin 12 ft . by 8 ft . by 6 ft . What was its value, at $\$ 4.25$ per cental?
19. A bin, 8 ft .6 in . by 6 ft . by 3 ft .9 in . is filled with wheat. If a bushel of 60 lb . make 48 lb . of flour, how many barrels of flour can be made from the contents of the bin?
20. The capacity of a tank is $126 \mathrm{cu} . \mathrm{ft}$. How many gallons of water will it contain? How many bushels of wheat?
21. A farmer has a wagon, the box of which is 12 ft . long, 3 ft .2 in . wide, and 2 ft .3 in . deep; how many bushels of corn will it hold? How many bushels of apples?
22. What must be the length of a bin, whose width is 5 ft . and depth 5 ft ., to hold 180 bushels of grain?
23. A cellar 40 ft . long and 30 ft . wide contains $2 \frac{1}{2} \mathrm{ft}$. of water; what will be the cost of pumping it out, at 4 cents a hogshead?
24. What will be the cost of a pile of wood 57 yd .1 ft . long, 4 ft . wide, and 6 ft .8 in . high, at $\$ 3.75$ a cord?
25. How many cords of stone will be required to enclose with a dry wall a lot 30 rods long, and 17 rods wide, the wall being 6 ft . high and 2 ft .9 in . thick ; and what will be the cost, at $\$ 3 \frac{1}{2}$ a cord?

INDUCTIVE EXERCISES.

325. 326. What is $\frac{1}{160}$ of 100 lb ? $\frac{3}{100}$ of $\$ 100$? $\frac{5}{180}$ of 100 ft ? . 05 of $\$ 100$? . 25 of $\$ 100$? . 40 ? . 75 ?
1. What is $\frac{2}{100}$ of 100 mi .? Of 200 ft .? Of $\$ 500$?
2. What part of 100 bu . is 1 bu ? ? 3 bu.? 5 bu.? 10 bu.?
3. How many hundredths of $\$ 100$ are $\$ 7$? Of $\$ 300$ are $\$ 15$? Of \$500 are \$20?
4. How many hundredths of any number equal $\frac{1}{2}$ of it?
5. In a quantity of apples 5 bbl . of every 100 bbl . are rotten; what part of the whole is bad? What part is good?
6. A grocer gains $\$ 6$ on every $\$ 100$ worth of groceries sold; what part of his sales is gain?
7. Per Cent. (from the Latin per-centum) means by the hundred; hence, any per cent. of a number or quantity is so many luundredths of that number or quantity.

Thus, 4 per cent. means 4 of every 100 , or $\frac{4}{100}$, or .04 , the 4 standing for the numerator, and the word "per cent" for the denominator 100. 12 per cent. of 50 lb . is .12 , or $\frac{12}{100}$ of 50 lb .

32\%. The Sign \% is generally used to denote per cent.
Thus, 6% is read 6 per cent.; 7% is read 7 per cent.; $\frac{1}{2} \%, \frac{1}{2}$ per cent. 6 per cent., $6 \%, \frac{6}{10 \%}$, and .06 are equivalent expressions.

1. How many hundredths of a number is 6 per cent. of it? 8 per cent. of it? 15% ? 25% ? 40% ? 75% ?
2. What per cent. of a number is $\frac{3}{100}$ or it? $\frac{8}{100}$ of it? .07? .16? . 35 ? . 48 ? . $62 \frac{1}{2}$?
3. What per cent. of a number is $\frac{1}{4}$ of it?

Analysis.-Since the whole of any number or thing is $\frac{100}{100}$, $\frac{1}{4}$ of the same is $\frac{1}{4}$ of $\frac{100}{100}$, or $\frac{25}{100}$, equal to 25%.
4. What per cent. of a number is $\frac{1}{3}$ of it? $\frac{1}{5}$? $\frac{1}{8}$? $\frac{1}{10}$? $\frac{1}{12}$? $\frac{3}{4}$? $\frac{4}{5}$? $\frac{5}{8}$?
328. Per cent. may be expressed by a common or by a decimal fraction. Thus,

Per cent.	Dec.	Com. F.	Per cent.	Dec.	Com. F.
1%	.01	$\frac{1}{100}$	$2 \frac{1}{2 \%}$.025	$\frac{1}{40}$
4%	.04	$\frac{1}{25}$	$\frac{1}{2} \%$.005	$\frac{1}{200}$
6%	.06	$\frac{3}{50}$	$\frac{3}{4} \%$	$.00 \% 5$	$\frac{3}{400}$
8%	.08	$\frac{2}{20}$	$12 \frac{1}{2} \%$.125	$\frac{1}{8}$
25%	.25	$\frac{1}{4}$	$16 \frac{1}{4} \%$.1625	$\frac{13}{80}$
$66 \frac{2}{3} \%$	$.66 \frac{2}{3}$	$\frac{2}{3}$	125%	1.25	$1 \frac{1}{4}$

EXERCISES.

1. Express in both forms, $7 \% ; 10 \% ; 18 \% ; 16 \frac{2}{3} \% ; 8 \frac{1}{3} \%$.
2. Express decimally $7 \frac{3}{5} \% ; 10 \frac{1}{2} \% ; \frac{3}{5} \% ; 2 \frac{3}{4} \% ; 6 \frac{3}{10} \%$.
3. Express fractionally 16%; $\frac{3}{4} \%$; $4 \frac{1}{2} \%$; 5%; 75%.
4. Change to equivalent expressions having the sign $\%$, $.0825 ; 1.15 ; .755 ; .00 \frac{5}{8} ; 1.00 ; .01125 ; .50 ; .0925 ; .375$.

2DEFINITI ONSC

329. In the applications of percentage, the three principal elements or parts involved are, the Base, or Multiplicand ; the Rate per cent., or Multiplier; and the Percentage, or Product.

Any two of these being given, the third is readily found.
330. The Base is the number on which the percentage is computed.
331. The Rate Per Cent. is the number which denotes how many hundredths of the base are to be taken, and is usually expressed as a decimal.
332. Percentage has two significations-

1st. It is the process of computing by hundredths.
$2 d$. It is the result obtained by taking as many hundredths of the base as are indicated by the rate.

Thus, in the statement 8% of 50 is 4 , the rate per cent. is .88 , tho base 50, and the percentage 4.
333. The Amount is the sum of the base and the percentage.
334. The Difference is the remainder after deducting the percentage from the base.

Thus, if the base is 60 , and the percentage 3 , the amount is $60+3=63$; and the difference is $60-3=57$.
335. Principle. The base is either an abstract or a denominate number; the RATE PER CENT. is always abstract; and the percentage, amount, and difference are always like the base.
336. The Base and Rute \% given to find the Percentage.

> MENTAL EXERCISES.

1. What is 10% of $\$ 120$?

Analysis. -10% of $\$ 120$ is $\frac{10}{100}$, or $\frac{1}{10}$ of $\$ 120$, which is $\$ 12$. Hence, etc.

What is
2. 6% of $\$ 200$?
3.8% of 25 lb .?
4. 9% of 60 bu ?
5. $12 \frac{1}{2} \%$ of 400 A ?

Find
6. 20% of 500 men .
\%. 25% of $\$ 800$.
8. 40% of 300 miles.
9. 75% of 50 sheep.

Find the amount
10. Of $\$ 60$, at $33 \frac{1}{3} \%$; at 25%. 11. Of 75 doz., at 20%; at 5%. 12. Of $\$ 150$, at 4%; at 10%.

Find the difference
13. Of \$200, less 3%; 7\%.
14. Of 800 lb ., less 25%; $12 \frac{1}{2} \%$.
15. Of 100 lb ., less 16%; 40\%.
16. In a purchase of 150 doz . of eggs, 10% proved to be bad; how many were good?
17. A clerk receiving $\$ 50$ a month had his salary raised 40%. What did he then receive?
18. A man paid $\$ 300$ for a horse, and sold him for 5% less than he paid. What did he receive for him?
19. If a steamer running 12 miles an hour increases her speed 25%, how far does she then run in an hour?

Written Exercises.
33%. What is 18% of $\$ 1450$? Find the am't and diff. operation. any number is 18 of that number, 18% of $\$ 1450$ is $\$ 1450 \times .18$ $=\$ 261$, the required percentage.
$\$ 1450$ Bass. . 18 Rate\%.
$\$ 1450$ Bass.
.18 Rate \%.
$\$ 261.00$
Percentage.
$\$ 1450+\$ 261=\$ 1711 \mathrm{Am}^{\prime} \mathrm{t}$. $\$ 1450-\$ 261=\$ 1189$ Diff.

Formulas : $\left\{\begin{array}{l}\text { 1. Base } \times \text { Rate } \%=\text { Percentage } . \\ \text { 2. Base }+ \text { Percentage }=\text { Amount. } \\ \text { 3. Base }- \text { Percentage }=\text { Difference } .\end{array}\right.$
The pupil should be required to construct a rule in ordinary langrage from each formula. Thus,

1. Muttiply the base by the rate \%, for the percentage.
Rules. \{ 2. Add the percentage to the base, for the amount.
2. Subtract the percentage from the base, for the difference.

What is
2. 4% of 940 ? 5% ? 6% ?
3. $6 \frac{1}{2} \%$ of $\$ 875$? 7% ? $12 \frac{1}{2} \%$?
4. 10% of 2340 ft .? 15% ?
5. 105% of 3462 rd.? $87 \frac{1}{2} \%$?

Find

6. $1 \frac{1}{2} \%$ of 50 A.; $\frac{3}{4} \%$; $2 \frac{1}{4} \%$.
7. $33 \frac{1}{3} \%$ of 420 yd .; $2 \frac{1}{8} \%$; $\frac{4}{8} \%$.
8. 8% of $£ 2510 \mathrm{~s} .6 \mathrm{~d} . ; 15 \%$.
9. 25% of 20 rd .1 ft .6 in .
10. Find $8 \frac{1}{3} \%$ of 360 bu. ; $\frac{1}{2} \%$ of $\$ 450 ; 1 \frac{3}{8} \%$ of $600 \mathrm{ft} . ;$ 26% of 48 T .
11. Find the value of 9% of $\$ 350+14 \%$ of $\$ 175-6 \frac{1}{4} \%$ of $\$ 500$, multiplied by $3 \frac{1}{2} \%$ of 40 .
12. How much copper in 18 T. of ore, if it yields $66 \frac{2}{3} \%$ of metal to the ton? If 45% ? If $3 \% \frac{1}{2} \%$?
13. A house and lot bought for $\$ 3750$ increased in value $112 \frac{1}{2} \%$. What was it then worth ?
14. From a bill of goods amounting to $\$ 642$ is deducted 5%; what is the percentage allowed, and the amount paid?
15. If the bread made from a barrel of flour weighs 30% more than the flour, what is the weight of the bread?
16. A man having $\$ 5000$, invested 20% of it in bonds and mortgages ; 40% of the remainder in bank stock, and the remainder in real estate. What did the real estate cost him?
17. Bought 150 bbl . of flour at $\$ 6.75$ a barrel, and sold it at an advance of $12 \frac{1}{2} \%$. What amount did it bring?
18. A man owning $\frac{5}{8}$ of an iron mine, sold $37 \frac{1}{2} \%$ of his share for $\$ 25600$. What part did he then own? What was its value?
19. A farmer having 800 bu . of wheat, sold $12 \frac{1}{2} \%$ of it to one man, and $16 \frac{2}{3} \%$ of the remainder to another. How many bushels remained ?
20. A man having an annual income of $\$ 3500$, spends 15% in traveling, 20% for board, $6 \frac{1}{4} \%$ in donations, and $12 \frac{1}{2} \%$ for clothing and incidentals. How much does he spend, and how much does he save?
21. The Base and Percentage given to find the irute \%.

Mental Exercises.

1. What per cent. of 28 is 7 ?

ANALYSIS.-Since 7 is $\frac{7}{28}$ of $28, \mathrm{it}$ is $\frac{7}{28}$ or $\frac{1}{4}$ of 100%, which is 25%. Hence, etc.

What per cent
2. Of 88 is 11 ?
3. Of 40 lb . are 30 lb .?
4. Of 90 A . are 15 A .?
5. Of $12 \frac{1}{2}$ bu. are $2 \frac{1}{2}$ bu.?
6. Of $12 \frac{1}{2} \mathrm{ft}$. are $6 \frac{1}{4} \mathrm{ft}$.?
\%. Of $37 \frac{1}{2}$ yd. are 5 yd ?
8. Of $\$ 2$ are $\$.80$?
9. Of $\$ 5$ are $\$.25$?
10. Of . 75 are .15 ?
11. Of 1 cental are $8 \frac{1}{3} \mathrm{lb}$.?
12. Of $\frac{3}{4}$ is $\frac{1}{4}$?
13. Of $\frac{5}{6}$ is $\frac{1}{3}$?
14. Of $1 \frac{1}{2}$ is $\frac{3}{8}$?
15. Of $3 \frac{3}{4}$ is $\frac{3}{4}$?
16. $\frac{3}{6}$ of $\$ 25$ is what per cent. of $\frac{3}{4}$ of $\$ 40$?
17. $2 \frac{1}{4}$ times a number is what per cent. of it?
18. $\frac{3}{5}$ of 15% is what per cent. of 24 times 12% ?
19. If a miller takes 2 qt. of every bushel he grinds, what per cent. does he take? If he takes 4 qt.?
20. If $\$ 6$ is paid for the use of $\$ 72$ one year, what is the rate per cent.?
21. A boy having $\$ 1.20$, gave 90 cents for a knife. What per cent. of his money did he spend, and what per cent. had he left?
22. A farmer having 300 sheep sold $\frac{1}{4}$ of his flock to one man, and 20% of it to another. What per cent. remained?
23. A newsboy lost 15 papers out of 45 which he had bought. What per cent. did he lose?
24. In a school there are 100 boys and 150 girls. What per cent. more is the number of girls than of boys?
25. After 21 gal . had been drawn from a full hhd. of molasses, what per cent. remained?

WRITTEN EXERCISES.

339. 340. What per cent. of 125 is 35 ?

Explanation.- 35 is $\frac{85}{125}$ or $\frac{7}{25}$ of 125 ; and $\frac{7}{25}$ expressed in hundredths, or $\frac{7}{25}$ of 100%, is 28 or 28%. Or, since the percentage is the product of the base by the rate, the rate is the quotient of the percentage divided by the base, or $35 \div 125=.28$ or 28%, the required rate.
operation.
Base. Percentage.
$125) 35.00$
. 28 Rate \%.

Formula: Percentage \div Base $=$ Rate $\%$.

What per cent. of
2. 450 is 25 ? 30 ? 75?
3. $\$ 80$ is $\$ 12$? $\$ 10$? $\$ 6 \frac{2}{3}$?
4. 6 lb . is $1 \frac{1}{2} \mathrm{lb} . ? \frac{3}{4} \mathrm{lb}$.? 8 oz. ?
5. 12.5 rd . is. $75 \mathrm{rd} . ? 2.5 \mathrm{rd}$?
6. $8 \mathrm{bu} .3 \mathrm{pk} .5 q \mathrm{t}$. is 3 bu .2 pk .?
7. $\$ 120$ is $\$ 6.60$? $\$ 20$?
8. 30 lb . is 11 lb .4 oz . Av.?
9. 3 hr . is 48 min ? $2 \frac{1}{4} \mathrm{hr}$.?
10. 8 yd . is 7 ft .? 4 ft .?
11. $£ 1$ is 5 d .?
12. If a barrel of flour makes 264.6 lb . of bread, what per cent more than the flour does the bread weigh?
13. A farmer raised 500 bu . of oats, and sold all but y7\% bu. What per cent. of his crop did he keep?
14. A bankrupt owes $\$ 12 \% 50$, and his assets are $\$ 7968.75$. What per cent. of his debts can he pay?
15. From a farm containing $320 \mathrm{~A} ., \frac{1}{2}$ was sold at one time, and $\frac{1}{2}$ of the remainder at another. What per cent. of the farm remained?
16. From a hogshead of sugar containing $640 \mathrm{lb} ., 160 \mathrm{lb}$. were sold at one time, and $\frac{2}{3}$ of the remainder at another time. What per cent. of the whole remained?
17. A regiment went into battle with 1050 men, and came out with 588 men. What per cent. was lost?
18. A cask holding 51 gal. leaked so that but 19 gal. 1 pt. remained. What per cent. leaked out?
340. The Late \% and Percentage given to find the Base.

MEntal ExERCises.

1. 16 is 8% of what number?

ANALYSIS.-Since 8%, or $\frac{8}{10 \%}$ of some number is $16,1 \%$ or $\frac{1}{100}$ of the number is $\frac{1}{8}$ of 16 , or 2 ; and 100% is 100 times 2 , or 200 .
2. 12 is $\frac{1}{10}$ of what number? 10% of what number?
3. 15 is $\frac{3}{8}$ of what number? $37 \frac{1}{2} \%$ of what number?
4. 25 is 6% of what number? 8% ? $12 \frac{1}{2} \%$? $33 \frac{1}{3} \%$?
5. 4.9 is $\% \%$ of what number? $3 \frac{1}{2} \%$? $\frac{1}{2} \%$?
6. Of what is $60 \mathrm{lb} .20 \%$? $25 \mathrm{lb} ., 6 \frac{1}{4} \%$? 16 doz., $8 \frac{1}{3} \%$?
7. 10% of 50 oz . is 4% of how many ounces? 8% ? 12% ?
8. How many acres in a farm of which 10.5 A . is 15% ?
9. The rent of a house is $\$ 450$, which is 9% of its value. What is its value?
10. $12 \frac{1}{2} \%$ of 96 bu . is 20% of how many bushels?
WRITTEN EXERCISES.
341. 1. 288 is 18% of what number?

Explanation.-Since 288, the percentage, is the product of the base by the rate, the base is the quotient of the percentage divided by the rate, or $288 \div .18=1600$, the required base.

OPERATION. Rate \%. Percentage.
. 18) 288.00 1600 Base.

Formula: Percentage \div Rate $\%=$ Base.

Of what number
2. Is $420,12 \frac{1}{2} \%$? 25% ?
3. Is $\$ 18.75,64 \%$? 15% ?
4. Is $22.4, \frac{1}{2} \%$? $2 \frac{1}{2} \%$?
5. Is $1089,125 \%$? $8 \frac{1}{3} \%$?

Of what
6 , Is $\$ 62 \frac{1}{2}, 8 \%$? $12 \frac{1}{2} \%$?
7. Is $15 \mathrm{mi} .8 \mathrm{rd} ., \frac{3}{4} \%$? 3% ?
8. Is 3% bu. 2 pk., 2% ? $2 \frac{1}{2} \%$?
9. Is 19.8 lb ., $7 \frac{1}{2} \%$? 15% ?
10. 40% of 640 bbl . is 8% of how many barrels?
11. A merchant sold $\$ 6300$ worth of goods, and had 40% of his stock left. What was his entire stock?
12. If a man owns $\% 5 \%$ of a factory, and sells $33 \frac{1}{3} \%$ of his share for $\$ 7400$, what is the value of the whole factory?
13. A farmer raised 250 bu . of barley, which was $12 \frac{1}{2} \%$ of his crop of wheat. How much wheat did he raise?
14. A clerk spends $\$ 960$, and has 30% of his salary left. What is his salary?
15. A farmer sold 42 A. 120 sq. rd. of land, which was 20% of his farm. What was the size of his farm?
16. A man owning 60% of a cotton mill, sold 25% of his share for $\$ 7500$. What was the value of the whole mill?
17. A man drew out 15% of his bank deposit to pay a debt of $\$ 643.50$. How much had he in bank?
342. The Amount, or Difference, aud Rate given to find the Base.

Mental Exercises

1. What number, increased by 25% of itself amounts to 35 ?

Analssis.-Since 35 is 25% more than the number, 35 is 125%, or $\frac{125}{1250}$, equal to $\frac{5}{4}$ the number; hence, the number is 4 times $\frac{1}{5}$ of 35 , which is 28.
2. 60 is 25% more than what? $12 \frac{1}{2} \%$ more? $6 \frac{1}{4} \%$? $2 \frac{1}{2} \%$?
3. What number increased 15% amounts to 46 ? To 69 ?
4. My watch cost $\$ 66$, which was 10% more than the cost of the chain. What was the cost of the chain?
5. What number diminished by 20% of itself gives 36 ?

Analysis.-Since 36 is 20% less than the number, 36 is 80%, or $\frac{80}{100}$, equal to $\frac{4}{5}$ the number; hence, the number is 5 times $\frac{1}{4}$ of 36 , which is 45 .
6. 70 rd . is $12 \frac{1}{2} \%$ less than how many rods ? $16 \frac{2}{3} \%$ less?
7. I paid $\$ 210$ for a horse, which was 30% less than I paid for a carriage. What did the carriage cost me?

Written ExERCises.

343. 344. What number increased by 24% of itself amounts to 1829 ?

Explanation.-Since the number is increased by 24% of itself, 1829 is 124%, or 1.24 times the number. Hence, $1829 \div$ $1.24=1475$, the required base.

OPERATION.
$1+$ Rate \%. Amount.
$1.24 \lcm{1829.00}$
1475 Bаяе.
2. What number diminished by 15% of itself gives 799?

Explanation.-Since the number is diminished by 15% of itself, 799 is 85%, or .85 of the number. Hence, $799 \div .85=$ 340 , the required base.

OPERATION.
1-Rate \%. Difference.
$.85) \frac{799.00}{940}$ Base.

Formulas: $\left\{\begin{array}{l}\text { 1. Amount } \div(1+\text { Rate } \%) \\ \text { 2. Difference } \div(1-\text { Rate } \%)\end{array}\right\}=$ Base.
What number increased What number diminished

> | 3. By 35% of itself is $168 . \% 5$? | $\begin{array}{l}5 . \text { By } 55 \%, \text { is } 42 \mathrm{mi} .60 \mathrm{rd.?} \\ \text { 4. By } 12 \frac{1}{2} \% \text {, is } 1413 \text { ? }\end{array}$ 6. $7 \frac{1}{2} \%$, is 740 mi ? |
| :--- | :--- |

7. A drover sold 40 head of cattle for $\$ 3040$, which was $33 \frac{1}{3} \%$ more than the cost. Find the average cost of each.
8. A man, after paying $62 \frac{1}{2} \%$ of his debts, finds that $\$ 4500$ will pay the remainder. What is his whole debt?
9. Sold two building lots for $\$ 1200$ each; for one I received 25% more than cost, and for the other 25% less than cost. What was the gain or loss on both ?
10. A lot, 20 rd . by 30 rd ., was sold for $\$ 1 \% .20$, which was $9 \frac{1}{5} \%$ less than it cost. What did it cost per square rod ?
11. A farmer sold 25 sheep for $\$ 115$, which was 25% more than he paid for them. What did he pay per head?
12. A dealer sold 120 bbl . of flour for $\$ 792$, which was 12% less than he paid for it. What did he pay per barrel?

TRADE DISCOUNT.

344. Commercial or Trade Discount has no reference to time, but is simply a deduction of a certain per cent. from the nominal price or value of an article, or from the amount of debt, for cash payment or any other consideration, and expressed by the term "per cent. off," or so much off.

Thus, 15% off, or 15 off, means a discount of 15%, or 15% less than the nominal price, or the amount of debt.

Sometimes two or more discounts or percentages are deducted in succession.

Thus, 10 and 5% off means, first a discount of 10%, and then of 5% from the remainder; 20,10 , and 5% off means three successive discounts; 3 tens and 5 off means three successive discounts of 10% and 5% from the remainder.

When no discount is made, the price is called a Net Price.

Written Exercises.

1. Bought a bill of goods amounting to $\$ 675.50$, at 20% discount, and 3% ofif for cash. Find the cash payment.

This means that the goods were bought at the regular rates on the usual time, at 20% off, but for cash down a further discount of 3% from this would be made.
2. Bought a lot of envelopes marked $\$ 6.50$ per M., at 10 and 5% off ; what was paid for them?
3. From a bill of books amounting to $\$ 150$, a discount of 10 and $2 \frac{1}{2} \%$ was made. What was the discount, and the amount paid?
4. What is the difference between a discount of 40%, and 10% taken 4 times? Between 20% off, and 10 and 10% off?
5. What is the difference between 20,2 tens, and 5% off, and 50% off? Between 10 and 5% on, and 10 and 5% off?
6. School slates, marked to sell at $\$ 9.50$ a case, were sold at 60,10 , and 5% off. What was the price received?
\%. Paid $\$ 2.80$ for a book on which the bookseller allowed me a discount of 20% from the retail price. What was the retail price?

APPLICATIONS OF PERCENTAGE.

345. The principal applications of Percentage, in which time is not an element, are Profit and Loss, Commission and Brokerage, Insurance, Taxes, Stocks, etc.

Those in which time is an element are Interest, Discount, Exchange, Equation of Accounts, etc.

Some one of the four formulas of Percentage already considered is applicable in the solution of the problems arising in any of the above applications.

346. Profit and Loss are commercial terms used to express the gain or loss in business transactions, and are usually estimated at a rate per cent. on the cost, or the money invested.

34\%. The corresponding terms of Profit and Loss and of Percentage are as follows:

1. The Cost, or capital invested, is the Base.
2. The Rate \% of profit or loss is the Rate.
3. The Profit or Loss is the Percentage.
4. The Selling Price, or cost plus the profit, is the Amount.
5. The Selling Price, or cost minus the loss, is the Difference.

MENTAL EXERCises.

348. 349. Bought flour at $\$ 8$ a barrel, and sold it at a gain of $12 \frac{1}{2} \%$. What was the gain, and what the selling price?

Analysis.--Since the gain was $12 \frac{1}{2} \%$, it was $\frac{12 \frac{1}{2}}{100}$ or $\frac{1}{8}$ of the cost, $\frac{7}{8}$ of $\$ 8$ is $\$ 1$. The selling price was $\frac{8}{8}$ of the cost, or the cost $\$ 8$, plus the gain $\$ 1$, equal to $\$ 9$. Hence, etc.

Find the gain or loss, and selling price of
2. Tea bought at $\$.50$, and sold at a gain of $10 \% ; 25 \%$.
3. Cloth bought at $\$ 3$, and sold at a gain of $16 \frac{2}{3} \%$; 20%.
4. If butter is bought at 30 cents a pound, for how much must it be sold to gain 5% ? $12 \frac{1}{2} \%$? 20% ?
5. How must coffee that costs 20 cents a pound be sold to give a profit of 10% ? $12 \frac{1}{2} \%$? 15% ? 5% ? 30% ?
349. 1. A grocer buys sugar at 8 cents a pound, and sells it at 10 cents. What per cent. does he gain?

Analysis.-Since the gain on 8 cts. is 2 cts., or $\frac{1}{4}$ the cost, the gain per cent. is $\frac{1}{4}$ of 100%, or 25%. Hence, etc.

Find the rate of profit or loss on
2. Coffee, bought at 25 cts. a pound, and sold at 30 cents.
3. Apples bought at $\$ 3$ a barrel, and sold at $\$ 4$.
4. Cloth bought at $\$ 4$ a yard, and sold at $\$ 3.50$.
5. Sold a horse for $\frac{3}{4}$ of what he cost. What was the loss per cent?
6. Sold damaged cloth at $\frac{1}{8}$ less than cost. What was the loss \%?
7. What per cent. is lost in buying oats at $\$.50$ a bushei and selling the same at $\$.45$?
8. What per cent. is gained or lost by selling an article for $\frac{3}{4}$ of its cost? For $\frac{2}{3}$? For $\frac{4}{8}$? For double the cost? For $\frac{1}{2}$ the cost?
9. Sold flour so as to gain $\frac{2}{5}$ as much as it cost. What por cent. was gained?
350. 1. A merchant sold goods at 20% more than cost, and gained $2 \check{0}$ cents a yard. What was the cost?

Analysis. - Since the gain 20% is $\frac{20}{100}$ or $\frac{1}{5}$ of $100 \%, 25$ cts. is $\frac{1}{3}$ of the cost ; and $\frac{5}{5}$, or the cost, is 5 times 25 cents, or $\$ 1.25$. Hence, etc.

Find the cost of
2. Wheat, sold for 20 cts. a bushel above cost, or a gain of 10%.
3. A book, sold at a gain of 25 cts., or 5% above cost.
4. Oil, sold at a loss of $8 \frac{1}{3} \%$, or 12 cts. a gallon below cost.
5. Lumber, sold at a profit of $\$ 3$ per M., or 25%.
6. Shirts, sold at an advance of 30 cts., or a gain of 15%.
\%. A cow, sold for $\$ 9$ less than cost, or a loss of $16 \frac{2}{3} \%$.
8. A broker lost $\$ 1600$ by an investment in stocks, which was 10% of his capital. What sum had he invested?
351. 1. A horse was sold for $\$ 250$, at a profit of 25%. What did he cost?

Analissis.-The profit, 25% is $\frac{25}{100}$ or $\frac{1}{4}$ the cost. Then $\$ 250$, the selling price, is $\frac{5}{4}$ of the cost. $\frac{1}{5}$ of $\$ 250$ is $\$ 50$, or $\frac{1}{4}$ of the cost ; and $\frac{4}{4}$ is 4 times $\$ 50$, or $\$ 200$, the cost. Hence, etc.

Find the cost of
2. Silk, selling at $\$ 4$ a yard, and yielding a profit of $33 \frac{1}{3} \%$.
3. Fruit; sold for $\$ 40$, at a gain of 20%; at a loss of 25%.
4. A watch, sold for $\$ 120$, at a loss of $16 \frac{2}{3} \%$.
5. A dealer sold two pianos, at $\$ 240$ each, one for a profit of 20%, and the other at a loss of 20%. What was his entire gain or loss?
6. A tailor sold a suit of clothes for $\$ 42$, and thereby made a profit of $16 \frac{2}{3} \%$. What $\%$ would he have gained or lost had he sold the suit for $\$ 30$?
\%. What per cent. is gained by buying an article for $\frac{3}{4}$ of the market price and selling at 25% above? By buying for $\frac{7}{8}$ of the market price and selling at $12 \frac{1}{2} \%$ above ?

WRITTEN EXERCises.

352. To find the Profit or Loss aud the Selling Price.
353. Goods bought for $\$ 850$ were sold at a profit of 15%. What was the gain, and the selling price?

OPERATION. $\$ 850$ Cost.
Explanation.-Since the gain was 15%, or $\frac{15}{100}$, equal to $\frac{3}{20}$ of the cost, the profit was .15 , or $\frac{3}{20}$ of $\$ 850$, or $\$ 127.50$. $\$ 850+\$ 127.50$ $=\$ 977.50$, the selling price. $(337,2$.

Formulas : $\left\{\begin{array}{ll}\text { 1. } & \text { Cost } \times \text { Rate } \%=\text { Profit or Loss. } \\ \text { 2. } & \text { Cost }+ \text { Profit } \\ \text { 3. } & \text { Cost }- \text { Loss }\end{array}\right\}=$ Selling Price.
Find the profit or loss, and the selling price of
2. Goods, bought for $\$ 750$, and sold at a gain of 20%.
3. A piano, that cost $\$ 450$, and sold at a loss of 12%.
4. Coal, bought at $\$ 4.20$ a ton, and sold at a gain of 25%.
5. Coffee, bought at 30 cents, and sold at a loss of $2 \frac{1}{2} \%$.
6. Flour, that cost $\$ 6.84$ per bbl., and was sold at a gain of $16 \frac{2}{3} \%$.
\%. At what price must cloth, that cost $\$ 2.75$ a yard, be marked to gain 24% ? To lose 6% ?
8. If a hhd. of sugar, weighing 8 cwt .76 lb ., cost $\$ 61.3 \%$, and $\$ 8.76$ is paid for freight and cartage, at what price per pound must it be sold to gain $12 \frac{1}{2} \%$? 15% ?
9. If 75 yards of cloth cost $\$ 225$, at what price must it be sold per yard to gain 10% ? $18 \frac{1}{2} \%$? $31 \frac{1}{4} \%$?
10. Bought two houses for $\$ 1500$ each, and sold one at an advance of $33 \frac{1}{3} \%$, and the other at a loss of $33 \frac{1}{3} \%$. What did I gain or lose on both ?

353. To find the Rute \% of profit or loss.

1. Sold a quantity of goods for $\$ 620$, that cost $\$ 500$. What was the gain per cent.?

Explanation.-Since $\$ 500$ gain $\$ 120$, or $\frac{120}{50}=\frac{6}{25}$ of itself, the gain \% is $\frac{6}{25}$ of 100%, which is 24%. Or, since the profit or loss is the product of the cost by the rate \% (35 ${ }^{2}, 1$), the rate $\%$ is the quotient of the profit or loss divided by the cost, or $\$ 120 \div \$ 500=.24$, or 24%. (339.)

$$
\text { Formula : Profit or Loss } \div \text { Cost }=\text { Rate } \% \text {. }
$$

What is the rate per cent. of profit or loss on
2. Cloth, bought at $\$.75$ a yard, and sold at $\$.87 \frac{1}{2}$?
3. Cloth, bought at $\$.87 \frac{1}{2}$, and sold at $\$.75$?
4. Apples, bought at $\$ 3.75$ per bbl., and sold at $\$ 5$?
5. Sugar, bought at $7 \frac{1}{3}$ cents, and sold at 9 cents?
6. Tea, that cost $\$ 1.20$, and was sold at $\$ 1.08$?
7. Wheat, bought for $\$ 1.32$, and sold for $\$ 1.54$?
8. Two reams of paper, bought at $\$ 3$ a ream, and sold at 25 cents a quire ?
9. 25 lbl . of flour, bought at $\$ 6.80$, and sold at a gain of $\$ 51$?
10. If $\frac{4}{5}$ of a certain investment is sold for what $\frac{1}{2}$ of it cost, what is the loss per cent.?
11. A merchant bought some goods for $\$ 1500$, which was $\$ 500$ less than their real value, and sold them at 25% above their real value. What per cent. profit did he make?
12. If $\frac{3}{4}$ of a hhd. of sugar is sold for what the whole cost, what is the gain per cent. on the part sold ?
13. A man sold a house for $\$ 350$, and gained $\$ 58 \frac{1}{3}$. If he had received \$70 more, what per cent. would he have gained?

354. To find the Cost.

1. Sold a piece of property at an advance of $\$ 24.90$, which was 20% of its cost. What was its cost?

Explanation. Since the gain was 20% or ${ }_{10}^{200}=\frac{1}{5}, \$ 24.90$ is $\frac{1}{5}$ the cost, etc. Or,

Since the profit or loss is the product of the cost by the rate $\%$, the cost is the quotient of the profit or loss divided by the rate \%; $\$ 24.90 \div .20=\$ 124.50$. (341.)

Formula: 1. Profit or Loss \div Rate $\%=$ Cost.
What is the cost of
2. Oloth, sold at an advance of $\$.70 \frac{1}{2}$ a yd., at 15% profit?
3. Tea, sold at $\$.12 \frac{1}{2}$ per lb. less than cost, at a loss of $12 \frac{1}{2} \%$?
4. Corn, sold at $\$.1 \%$ per bu. less than cost, at a loss of 25% ?
5. Pork, sold at $\$.50$ per cwt. less than cost, at a loss of 10% ?
6. A man sold 108 A . of land, at a loss of $\$ 486$, which was 20% of the cost. What was the buying and selling price per acre?
7. By selling iron rails at $\$ 49.50$ a ton, a profit of $12 \frac{1}{2} \%$ is made. What was the cost?

Explanation. Since the gain is $12 \frac{1}{2} \%$, or $\frac{1}{8}$ of the cost, the selling price is $\frac{9}{8}$ of the cost, or 8 times $\frac{1}{8}$ of $\$ 49.50$, etc. Or,
Since $12 \frac{1}{2} \%$ of the cost is gained, the selling price is $112 \frac{1}{2} \%$, or $1.12 \frac{1}{3}$ times the cost. Hence, $\$ 49.50 \div 1.125=\$ 44$, the cost. $\quad(343,1$.

Formulas:

$$
\text { 2. Selling Price } \div\left\{\begin{array}{l}
\text { 1. (1+Rate \% of Gain }) \\
\text { 2. (1-Rate \% of Loss })
\end{array}\right\}=\text { Cost. }
$$

8. What is the cost of silk, sold for $\$ 4.13$ a yard, at a gain of 18% ?

Find the cost of
9. Carpeting, sold at $\$ 1.96$ a yard, at a gain of $16 \frac{2}{3} \%$.
10. A horse, sold for $\$ 240$, at a loss of 15%.
11. Coal, sold for $\$ 6.50$ a ton, at a gain of 30%.
12. A grocer sells molasses at $\$.93$, and makes 24% profitr What was its cost?
13. A merchant sold goods at a profit of 8%, and cleared $\$ 1500$. What did they cost?
14. By selling tea at an advance of $13 \frac{1}{3} \%$, a profit of 10ϕ a pound is made. What was the cost per pound?
15. A merchant sells muslins for $2 \frac{1}{2}$ cents above cost, and makes a profit of 20%. What was the cost per yard?
16. How must goods be marked that cost $\$ 3.50$ a yard, so that $12 \frac{1}{2} \%$ may be deducted from the marked price, and still a profit made of 15% ?

First find the selling price at 15% profit; then regard the selling price as cost, and find the asking price.
$\$ 3.50 \times(1+.15)=\$ 4.025$, the selling price. (337.)
$\$ 4.025 \div\left(1-.12 \frac{1}{2}\right)=\$ 4.60$, the marking price. $(354,2$.
Find the marking price when
1\%. The cost is $\$ 1.12$, so as to abate 5%, and still clear 25%.
18. The cost is 9 cents, so as to fall 10%, and make 50%.
19. The cost is $\$ 60$, so that 4% may be abated, and make 20%.
20. A case of goods that cost $\$.80$ a yard is somewhat damaged ; how must they be marked, to abate 25% in the marked price, and still receive what they cost?
21. What must be the marked price of hats that cost $\$ 3.29$ each, that $12 \frac{1}{2} \%$ may be deducted from the price, and still a profit of $12 \frac{1}{2} \%$ be made?
22. Bought coal at $\$ 3.75$ a ton. How much must I ask a ton, that I may deduct 15% from my asking price, and still make a profit of $12 \frac{1}{2} \%$ on the cost?

6OMMISSIONe

355. A Commission Merchant, Agent, or Factor is a person engaged chiefly in buying and selling merchandise, or other property, collecting, or investing money, or transacting other business for another.

The person for whom the business is transacted is called the Principal; the person who sends goods to be sold is called the Consignor or Shipper; the goods sent, a Consignment ; and the person to whom they are sent, the Consignee, or Correspondent.
356. Commission is an allowance or compensation to a commission merchant, agent, or factor, for the transaction of business, and usually is a percentage of the money involved in the transaction.

35\%. The Net Proceeds of a sale, or consignment is the money due the Consignor, from the Consignee, after deducting the commission and all other charges.
358. A Broker is usually one who buys and sells stocks, bills of exchange, real estate, bonds, etc., for a commission, called Brokerage.

All problems of Commission and Brokerage may be solved by apply ing the formulas of Percentage already given.
359. The corresponding terms are as follows:

1. The Amount of Sales, Money Invested or Collected, is the Base.
2. The Rate \% allowed for services is the Rate.
3. The Commission or Brokerage is the Percentage.
4. The Amount of Sales, or sum collected or iṇvested, plus the commission, is the Amount; or minus the commission, is the Difference.

Written Exercises.

360. What is the Commission or Brokerage
361. On a sale of cotton for $\$ 6450$, at $1 \frac{1}{2} \%$?

Formula: Amt. of Sales \times Rate $\%=$ Com. $\quad(\mathbf{3 3 \%}, 1$.
2. On 225 bbl. of flour, at $\$ \% .60$ per barrel, at 2% ?
3. On the purchase of 26 hhd . of sugar, each weighing 5 cwt. 45 lb ., at ${ }^{7} \frac{1}{2}$ cents a pound, commission $\frac{7}{8} \%$?
4. On the purchase of a house for $\$ 1500$, at $3 \frac{1}{2} \%$?
5. On a sale of $\$ 5628.50$ worth of goods, at $6 \frac{1}{4} \%$?
6. On the purchase of 120 shares of stock, at $\$ 94 \frac{1}{2}$, brokerage ${ }_{4}^{1 \%}$?
\%. My attorney collected 80% of a note for $\$ 1200$, and charged $5 \frac{1}{2} \%$ commission. What amount should he pay me?
8. An agent sells a consignment of flour for $\$ 7532.80$, and then purchases 1840 bu . of wheat, at $\$ 1.40$ a bushel ; his commission being $2 \frac{1}{4} \%$, what sum must he remit to the consignor?
361. What is the Rate of commission or brokerage,

1. If $\$ 35$ is charged for selling a piece of property for $\$ 700$?

Formula: Commission \div Sales $=$ Rate \%. (339.)
2. If $\$ 31.50$ is charged for collecting a debt of $\$ 1260$?
3. If $\$ 2 \%$ is charged for purchasing $\$ 5400$ of bank stock ?
4. If $\$ 162$ is charged for selling $\$ 3600$ worth of furniture ?
5. Paid a broker $\$ 38.10$ for buying 120 shares of railroad stock, at $\$ 95 \frac{1}{4}$ a share. What was the rate of his brokerage?
6. An agent in Chicago remitted $\$ 3795.66$ on a sale of 540 bbl . of flour, at $\$ 7.25$ a barrel. What was his rate of commission?
\%. A real estate broker charges $\$ 182.34$ for investing $\$ 12156$ in a factory. What was his rate of brokerage ?
362. What is the Amount of Sales,

1. When a commission of $\$ 360$ is charged, at $2 \frac{1}{2} \%$?

Formula: Commission \div Rate $Y_{o}^{\prime}=$ Amt. of Sales. (341.)
2. When the brokerage charged is $\$ 48$, at $\frac{1}{4} \%$?
3. When a commission of $\$ 24.52$ is charged, at 2% ?
4. When a commission of $\$ 5 \% .82 \frac{1}{2}$ is charged, at $4 \frac{1}{2} \%$?
5. When the net proceeds are $\$ 38 \%$, commission $3 \frac{1}{4} \%$?

Formula: Net Pro. $\div(1-$ Rate \% $)=$ Amt. Sales. $(\mathbf{3 4 3}, 2$.
6. When the net proceeds are $\$ 2444.55$, brokerage $\frac{3}{4} \%$?
7. When the commission is $\$ 135$, and the rate $1 \frac{1}{2} \%$?
8. When the net proceeds are $\$ 2422.50$, and the rate 5% ?
9. When the net proceeds are $\$ 5219.85$, and the rate $2 \frac{1}{4} \%$?
10. Paid an agent a commission of $\$ 133.12 \frac{1}{2}$, at $2 \frac{1}{2} \%$, to purchare wheat at $\$ 1.87 \frac{1}{2}$ a bushel. How many bushels did he buy, and what was the amount of his bill?
363. Find the Amount to be Invested,

1. If $\$ 582.40$ is remitted, deducting 4% commission.

Formula: Sum Rem. $\div(1+$ Rate \% $)=$ Sum Inv. $(\mathbf{3 4 3}, 1$.
2. If $\$ 2846.25$ is remitted, deducting $3 \frac{1}{2} \%$ commission.
3. If $\$ 4691.70$ is received, and $\frac{1}{4} \%$ brokerage is retained.
4. If $\$ 6500$ is received, and $1 \frac{1}{4} \%$ brokerage deducted.
5. What amount of wool, at $\$.52$ a pound, can be bought for $\$ 3109.60$ after deducting a commission of 4% ?
6. A stock-broker received $\$ 4575 \% .12 \frac{1}{2}$, to invest in stocks, at $\$ 91 \frac{2}{5}$ a share, after deducting $\frac{1}{8} \%$ brokerage. What amount of stock did be purchase?
7. Sent $\$ 414$ to an agent in Lowell, to be invested in prints, at $12 \frac{1}{2}$ cents a yard, after taking out his commission of $3 \frac{1}{2} \%$. How many yards can he purchase?

1 NuRANGE

364. Insurance is indemnity secured against possible loss or damage. It is of two general kinds: Insurance on Property, and Insurance on Life.
365. Property Insurance includes Fire Insurance, or indemnity for loss of property by fire ; Marine Insurance, for loss of vessel or cargo, whether at sea or on inland waters ; and Live Stock Insurance, for loss of horses, cattle, etc.
366. The Policy is the contract or agreement between the insurer and the insured.
$\mathbf{3 6 \%}$. The Premium is the sum paid for insurance, and is a certain percentage of the amount insured.

The same elements are involved in Insurance as in the fundamental problems of Percentage.
368. The corresponding terms are as follows:

1. The Amount Insured is the Base.
2. The Rate \% of Premium is the Rate.
3. The Premium is the Percentage.

Written Exercises.

369. What is the Premium for insuring
370. A house and furniture for $\$ 3600$, at 2% ?

Formula: Amt. Insured \times Rate $\%=$ Premium. (33\%, 1.)
2. A dwelling for $\$ 2 \% 00$, at $1 \frac{1}{2} \%$? For $\$ 4100$, at $\frac{3}{4} \%$?
3. A cargo of 5840 bu . of wheat, valued at $\$ 1.60$ a bu., at $1 \frac{1}{8} \%$ on $\frac{5}{8}$ of its value?
4. A drove of cattle for $\$ 3500$, at $\frac{1}{4} \%$? For $\$ 6000$, at $\frac{3}{8} \%$?
5. A mill worth $\$ 18000$, for $\frac{2}{3}$ of its value, at $1 \frac{3}{4} \%$?
6. At $\frac{1}{4}$ of 1% a month, what will be the cost of insuring goods valued at $\$ 7500$, which remain in store 4 months?
\%. What will be the cost of insuring my house for $\$ 6500$, at $\frac{3}{4} \%$; the furniture for $\$ 2500$, at $\frac{7}{8} \%$; and the barn and contents for $\$ 3000$, at 1% ?

3\%0. What is the Rate of Insurance,

1. If $\$ 54$ is paid for an insurance of $\$ 3600$?

Formula : Premium \div Am't Ins. $=$ Rate of Ins. (339.)
2. If $\$ 234$ premium is paid for an insurance of $\$ 5200$?
3. If $\$ 3$ premium is paid for $\$ 800$ insurance?
4. If $\$ 6.75$ is paid for an insurance of $\$ 900$?
5. A vessel and cargo were valued at $\$ 29 \% 000$, and the premium paid for insurance on $\frac{2}{3}$ their value was $\$ 2475$. What was the rate of insurance?
6. Paid $\$ 1443.75$ for insuring 2500 bbl . of flour, worth $\$ 10 \frac{1}{2}$ per bbl. What was the rate of insurance?
7. If it cost $\$ 8 \% 5$ to insure a cargo of goods valued at $\$ 50000$, what is the rate of insurance?

3\%1. What is the Amount of Insurance,

1. If $\$ 175$ premium is paid for insuring a hotel, at $1 \frac{1}{4} \%$? Formula: Premium \div Rate of Ins. $=$ Am't Ins. (341.)
2. If $\$ 187$ is paid to insure a mill, at $1 \frac{3}{8} \%$?
3. If the premium for insuring a house and furniture at $1 \frac{1}{2} \%$ is $\$ 79.14$?
4. A drover paid a premium of $\$ 73.50$, at 40 cents per $\$ 100$, for insurance on $\frac{3}{4}$ the value of a herd of cattle. What was the value of the entire herd?
5. A speculator bought $1000^{\circ} \mathrm{bbl}$. of flour, and had it insured for 80% of its cost, at $3 \frac{1}{4} \%$, paying a premium of $\$ 214.50$. At what price must he sell the flour to realize a profit of 20% ?
6. A man paid $\$ 1 \% 5$ for insuring his dwelling, at $\frac{7}{8} \%$, and $\$ 100$ for insuring the fiurniture, at $1 \frac{1}{4} \%$. If both are destroyed by fire, how much is he entitled to receive?
7. Paid $\$ 122.50$ insurance on a shipment of beef, at $3 \frac{1}{4} \%$, to cover $\frac{3}{4}$ of its value. What was its total value?
8. If I pay $\$ 100.25$ to insure the transportation of goods, at $2 \frac{1}{2} \%$, what is the value put upon the goods?

3'2. Taxes are sums of money assessed on persons, property, incomes, or products, for any public purpose.

3'3. A Capitation or Poll-tax is a tax assessed without regard to property, upon the person of every male citizen 21 years of age and upward not exempt by law.

3\%4. A Property Tax is a tax upon property, and is assessed at a given rate per cent. of the valuation, or so many cents on the $\$ 100$, or mills on the dollar.

Property is of two kinds-Real and Personal.
3\%5. Real Property, or Real Estate, is immovable property, as lands and houses.

3'6. Personal Property is movable property, as merchandise, furniture, tools, ships, cattle, money, stocks, mortgages, etc.

3\%\%. An Assessor is an officer appointed to estimate the value of property, and apportion the taxes.

3\%8. The corresponding terms of Taxes and Percentage are as follows :

1. The Valuation of property is the Base.
2. The Tax Rate or Tax on $\$ 1$ is the Rate.
3. The Sum to be Raised is the Percentage.
4. The Sum Collected, minus the Commission, is the Difference.

Written Exercises.

3\%9. 1. The taxable property of a village, estimated at $\$ 575000$, was assessed 7 mills on the dollar, for public improvements. What amount of tax was raised ?

1. Formula: Valuation \times Tax Rate $=$ Sum Raised. $\mathbf{(3 3 \%}$.)
2. What amount of tax must a man pay who is assessed $\$ 10500$ for real estate, and $\$ 5000$ for personal property, if he pays $1 \frac{1}{6} \%$ City tax, $\frac{1}{2} \%$ State tax?
3. At what rate must property valued at $\$ 1250000$ be assessed to raise a tax of $\$ 15000$?

$$
\text { 2. Formula: } \frac{\text { Sum to be Raised }}{\text { Valuation }}=\text { Rate of Tax. (339.) }
$$

4. A tax of $\$ 7380$ was levied upon the taxable property of a county, valued at $\$ 2460000$. What was the rate, and what was the tax upon a farm assessed at $\$ 4000$?
5. What is the valuation of a piece of property that pays a tax of $\$ 182$, at the rate of $3 \frac{1}{4}$ mills on the dollar?

$$
\text { 3. Formula: } \frac{\text { Sum Raised }}{\text { Rate of Tax }}=\text { Valuation. (341.) }
$$

6. If a tax of $\$ 240$ is assessed upon a cotton mill valued at $\$ 48000$, what is the valuation of a piece of property that pays a tax of $\$ 35.50$, at the same rate?
7. What sum must be assessed on a district, to build a school-house, at a cost of $\$ 2 \% 30$, and pay $2 \frac{1}{2} \%$ for colleotion?
8. Formula : $\frac{\text { Sum to be Raised }}{(1-\text { Rate of Collection })}=$ Sum to be Assessed.
9. A Town-hóuse, costing $\$ 12250$, was built by a tax assessed upon the property of the town. The tax rate was 5 mills on the dollar, and the cost of collection 2%. What was the valuation?

Rule for General Taxes.-1. From the sum to be raised, deduct the poll-tax, if any, and divide the remainder by the assessed value of the taxable property, real and personal; the quotient will be the rate of taxation.
2. Multiply the assessed value of each man's property by the rate, and to the product add his poll-tax, if any; the sum will be the whole tax.
9. A tax of $\$ 69 \% 1.60$ is assessed upon a certain town, containing 430 taxable polls, at $\$ 1.25$ each, the real estate is valued at $\$ 1354000$, and the personal property at $\$ 75800$. What will be the rate of taxation, and what will James Ray's tax be, who pays for 4 polls, and whose taxable property is valued at $\$ 5 \% 50$?
$\$ 1.25 \times 430=\$ 537.50$, total poll tax;
$\$ 6971.60-\$ 537.50=\$ 6434.10$, sum to be assessed on property ;
$\$ 1354000+\$ 75800=\$ 1429800$, amount of taxable property;
$\$ 6434.10 \div \$ 1429800=.004 \frac{1}{2}$, rate of taxation;
$\$ 5750 \times .004 \frac{1}{2}=\$ 25.87 \frac{1}{2}$, Ray's property tax;
$\$ 25.87 \frac{1}{2}+(\$ 1.25 \times 4)=\$ 30.87 \frac{1}{2}$, Ray's whole tax.
10. In the above town, what was A's tax, '- hose property was assessed at $\$ 3640$, and who pays for 2 polls?
11. What was B's tax, whose property is assessed at $\$ 7320$, and who pays for 3 polls?

R

380. Duties or Customs are taxes assessed by govern ment upon imported goods, for revenue purposes, or for the protection of home industry.

Duties are of two kinds, Ad Valorem and Specific.
381. An Ad Valorem Duty is a certain per cent. assessed on the actual cost of the goods, in the country from which they were imported, as shown by the invoice, or fixed by appraisement.
382. A Specific Duty is a tax assessed upon the number, weight, or measure of the goods, per bale, ton, pound, hhd., gal., etc., without regard to their value.
Before estimating Specific Duties, certain allowances" or deductions are made, called Tare, Leakage, Breakage, etc.
383. Tare is an allowance for the weight of the box, bag, or cask containing the merchandise.
384. Leakage is an allowance for the loss of liquids, ascertained by gauging the cask or barrel in which they are imported.
385. Breakage is an allowance for the loss of liquids imported in bottles.
386. An Invoice or Manifest is a written statement of a ship's cargo, showing the items, quantity, quality, and cost of goods, where shipped, and to whom consigned.
$\mathbf{3 8 \%}$. Gross Weight or Value is the weight or value of the merchandise before any allowances are made.
388. Net Weight or Value is the weight or value after all allowances are made.

The long' ton of 2240 lb . is invariably used in the U. S. Custom Houses. In weights, less than $\frac{1}{2} \mathrm{lb}$. is not regarded, and more than $\frac{1}{2} \mathrm{lb}$. is taken as 1 pound.
389. The corresponding terms of Ad Valorem Duties and Percentage are the following :

1. The Net Value or Quantity is the Base.
2. The Rate or Rate \% Ad Valorem is the Rate.
3. The Duty is the Percentage.

WRITTEN EXERCISES.

390. 391. Find the duty on 120 bags of coffee, gross weight 148 lb . each, allowing 3% tare, at $3 \frac{1}{2}$ cents a pound.
operation.

$$
\begin{aligned}
148 \mathrm{lb} . \times 120 & =17 \% 60 \mathrm{lb} ., \text { gross } ; \\
17 \% 60 \mathrm{lb} . \times .03 & =532.8 \mathrm{lb} ., \text { tare } ; \\
17 \% 60 \mathrm{lb} .-533 \mathrm{lb} . & =1722 \% \mathrm{lb} ., \text { net quantity } ; \\
\$.035 \times 1722 \% & =\$ 602.95, \text { duty. }
\end{aligned}
$$

Explanation. Since the tare is 3% of the gross weight, 17227 lb . is the net weight ; and since the duty on 1 lb . is $3 \frac{1}{2}$ cts., on 17227 lb . it is $\$ 602.95$.

Formula: 1. Rate \times Net Quant. $=$ Spec. Duty. $\quad(33 \%$ 1. $)$
Find the Duty
2. On 50 hh . of sugar, each weighing 480 lb ., at $1 \frac{1}{4} \mathrm{cts}$. a pound, tare 78 lb . per hhd.
3. On 360 doz. bottles of porter, duty $\$.50$ a dozen, breakage 10%.
4. On 250 chests of tea, each 75 lb ., invoiced at $\$.54$ a pound, duty 30% ad valorem.

Formula: 2. Net Invoice Cost \times Rate $\%=A d$ Val. Duty. (33\%, 1.)
Find the Duty
5. On 16 tons of steel, invoiced at 18 cents per lb., at 25% ad valoren.
6. On 175 boxes of raisins, 18 lb . per box, at $1 \frac{3}{4}$ cents per pound, tare 20%.
7. On 280 yd . of English Brussels carpet, 27 in . wide, invoiced at 8 s .6 d . per yard, duty 28 cents per sq. yd., and 35% ad valorem.
8. On 40 cases of tobacco, each weighing 65 lb ., and 20000 Havana cigars, weighing 200 lb. invoiced at $\$ 45$ per M., the duty on tobacco being $\$.30$ per lb., and on cigars $\$ 2 \frac{1}{2}$ per lb . specific, and 40% ad valorem.
9. A. T. Stewart \& Co. imported 10 cases of shawls, averaging 216 lb . a case, invoiced at 24884.10 francs, the duty being $\$.50$ a pound, and 35% ad valorem. The invoice was paid with a bill of exchange, bought at 5.16 francs to the dollar. What was the duty, and what did the shawls cost, after paying other charges to the amount of $\$ 75.80$?
10. Paid $\$ 22.40$ duty on 100 bbl . of sugar, each weighing 220 lb ., invoiced at 8 cts . a pound, tare 4%. What was the rate? (339.)
11. A merchant imported 80 pieces three-ply carpet, ${ }^{175}$ sq. yd. in a piece, and paid $\$ 2591.84$ duty, at 16 cts. per sq. yd., and 30% ad valorem. What was the invoice price per yard, in sterling money?
12. A wine merchant imported 6 casks of wine, and paid $\$ 432$ duty, at $\$ 2$ per gallon, leakage 10% allowed. How many gallons to each cask, had po leakage been allowed?
13. The duty on 300 drums of figs, containing 14 lb . each, invoiced at $5 \frac{1}{4}$ cts. a lb., was $\$ 17.64$; required, the rate.
14. The duty, at 19%, on an importation of satin, is $\$ 309.70$; what is the invoice of the goods?
391. Stock is the capital of an incorporated company. It is divided into equal parts, called shares, for distribution among several holders, and transfer from one to another.

It is sometimes called the Capital Stock ; and the company a Jointstock Company. Collectively, the shares of various companies in the market for sale and transfer are called Stocks.

The amount of each share varies in different companies. In railroad, bank, and insurance companies it is usually $\$ 100$.
392. A Certificate of Stock is a written instrument, issued by a company, certifying the number of shares to which the holder is entitled.

These may be bought and sold like any other property.
393. The Par Value of stock is the original value, or amount specified in the certificate.
394. The Market Value of stock is the sum for which it can be sold at any time.

When stock can be sold for its original or face value, it is said to be at par, represented by 100%; when it will bring more than its face value, it is above par, or at a premium; when less, below par, or at a discount.

The market quotations are given in percentage ; thus, 100 denotes at par; 110, 10\% above par ; 90, 10% belono par.
395. A Dividend is a sum paid to stockholders out of the earnings of the company, and is always reckoned on the par value of the stock.
396. A Stock Broker is one who buys and sells stocks for a commission, called Brokerage.

The brokerage is usually computed at a certain rate \% on the par value of the stock purchased or sold.

39\%. A Bond is an instrument in writing, given to secure the payment of a sum of money, at a specified time.

Bonds issued by the U. S. Government, or by States, cities, railroad companies, etc., and usually paying semi-annual interest, are dealt in as stocks, their value fluctuating according to the security afforded.

Bonds are either Reyistered, or Coupon Bonds.
U. S. bonds, and bonds issued by States, cities, corporations, etc., are quoted according to the rate of interest which they bear. Thus, U. S. 4's are bonds issued by the United States bearing 4% interest. Missouri 6 's are bonds issued by the State of Missouri bearing $6 \% \mathrm{int}$. N. Y. 7 's are bonds issued by the City of New York, bearing 7\% int.
398. Coupons are certificates of interest attached to bonds, each to be cut off and presented for payment when the interest is due.
399. The corresponding terms used in Stocks and Percentage are as follows:

1. The Par Value is the Base.
2. The Rate of Premium or Discount is the Rate.
3. The Premium or Discount is the Percentage.
4. The Market Value is the Amount or Difference.

WRitten Exercises.

400. To find the cost of stock, when the market value is at a premium or discount.
401. Find the cost of 150 shares of Illinois R. R. stock, the market value being $105 \frac{1}{2}$, brokerage $\frac{1}{8} \%$.

Explanation. Since the market value is $105 \frac{1}{2} \%$, and the brokerage $\frac{1}{8} \%$, the cost of 1 share is $105 \frac{5}{8} \%$ of $\$ 100$, equal to $\$ 105 \frac{5}{5}$; the cost of 150 shares is 150 times $\$ 105 \frac{5}{8} ; \$ 105 \frac{5}{8} \times 150=\$ 15343.75$, cost.

Formulas:

1. Par Value \times Rate $\%=$ Premium, or Discount.
2. Par Value + Premium or - Discount $=$ Marleet Val.
3. (Market Value of 1 Share + Brok. $) \times$ No. Shares $=$ Cost .

Find the Cost,
2. Of 36 shares Lake Shore R. R. stock, at $103 \frac{3}{8}$, brokerage $\frac{1}{8} \%$.
3. Of 45 shares canal stock, at $12 \frac{1}{2} \%$ discount. At $4 \frac{1}{8} \%$ premium.
4. Of four $\$ 1000$ U. S. $4 \frac{1}{2}$'s of 1891 , at $109 \frac{7}{8}$, brok. $\frac{1}{8} \%$.
5. A broker bought 72 shares of bank stock, at $2 \frac{3}{4} \%$ discount, and afterwards sold them at 1014. Find the gain.
401. To find the number of shares that can be bouglt for a given sum of money.

1. How many shares of railroad stock, at 1033 , can be bought for $\$ 26000$, brokerage being $\frac{1}{4} \%$?

Explanation. Since the market value is $103 \frac{3}{4}$, each share, with the brokerage, will cost $\$ 104$; hence, as many shares can be bought for $\$ 26000$ as $\$ 104$ is contained times in $\$ 26000$, or 250 shares.
Formula: 1. Amt. of Inv. \div Cost 1 Share $=$ No. of Shares.
2. How many $\$ 500 \mathrm{Mo} .6$'s, at $9 \% \frac{1}{4}$, brokerage $\frac{1}{4} \%$, can be bought for $\$ 5850$?
3. How many $\$ 5005 \%$ bonds, at $16 \frac{5}{8}$ premium, brokerage $\frac{3}{8} \%$, can be bought for $\$ 1 \% 550$?
4. How many shares of Western Union Telegraph Stock can I buy for $\$ 2610$, at $108 \frac{1}{2}$, brokerage $\frac{1}{4} \%$?
5. Bought U. S. Express stock at $32 \frac{1}{8}$, and sold it at $33 \frac{3}{4}$, paying $\frac{1}{8} \%$ brokerage each way, and gained $\$ 1650$. How many shares did I buy?

Operation. $\quad\left(33 \frac{3}{4}-\frac{1}{8}\right)-\left(32 \frac{1}{8}+\frac{1}{8}\right)=1 \frac{3}{8} \%$ gain; $\$ 1650 \div \$ 1 \frac{3}{8}=1200$, No. of shares.
Formula: 2. $\frac{\text { Whole Gain or Loss }}{\text { Gain or Loss on } 1 \text { Share }}=$ No, of Shares.
6. How many shares of Ohio Central Stock, bought at $20 \frac{1}{2}$, and sold at $21 \frac{3}{4}$, brokerage each way $\frac{1}{8} \%$, will yield a gain of $\$ 1000$?
402. To find what Investment must be made to produce a given income.

1. What sum must be invested in U. S. registered 4 's, at $107 \frac{1}{2}$, to yield an income of $\$ 1000$?

Explanation. The income on 1 share of 4% stock is \$4, and $\$ 1000 \div \$ 4=250$; hence, 250 shares. $\$ 107 \frac{1}{2} \times 250=\$ 26875$ amount invested.

Formulas :

1. Given Income \div Income of 1 Share $=$ No. of Shares.
2. Cost of 1 Share \times No. of Shares $=$ Sum Invested.

What sum must be invested
2. In stock at $97 \frac{1}{2}$, that pays a semi-annual dividend of 5%, to yield an annual income of $\$ 1500$?
3. In Ill. Central R. R. bonds, bearing 6% int., at 1043, brokerage $\frac{1}{4} \%$, to secure an income of $\$ 2400$ per annum?
403. To find what Income any investment will yield.

1. What income will be realized, by investing $\$ 12760$ in 5% bonds, purchased at $8 \% \frac{1}{2}$, brokerage $\frac{1}{2} \%$?

Explanation.-The cost of 1 share is $\$ 87 \frac{1}{2}$ plus $\$ \frac{1}{2}$, or $\$ 88$; and $\$ 12760 \div \$ 88=145$; hence 145 shares. $\$ 5$, income on 1 share $\times 145$ $=\$ 725$, income.
Formula : $\frac{\text { Investment }}{\text { Cost of } 1 \text { Share }} \times$ Income on 1 Share $=$ Income.
2. What annual income shall I receive from an investment of $\$ 15860$ in R. R. stock, at 99, brokerage $\frac{1}{8} \%$, if 4% semi-annual dividends are declared?
3. What income will $\$ 5000$ in U. S. 4's, at $103 \frac{1}{2}$, yield, brokerage $\frac{1}{4} \%$?

404. To find the Rate \% of income.

1. What rate per cent. will be realized from bonds bought at 120 , and paying 5% semi-annual dividends?

Explanation.-Since the cost of 1 share is $\$ 120$, and the annuai income is $\$ 10$, the rate per cent. is $\frac{10}{120}$ or $\frac{1}{12}$ of 100%, equal to $8 \frac{1}{3} \%$ Formula: $\frac{\text { Annual Inc. per Share }}{\text { Cost per Share }}=$ Rate \% of Inc. (339.)

Find the rate \% of income realized
2. From 6% bonds, bought at 75 ; at $97 \frac{1}{2}$; at 105 .
3. From R. R. stock paying 5\% semi-annual dividends, bought at a discount of 15%.
4. Which is the more profitable to buy, r's, at 105, or 5's, at 75 ? N. Y. 7 's, at 105 , or 6 's, at 84 ?
5. What per cent. of income do U. S. 6's yield, if bought at $108 \frac{1}{2}$?
405. To find the Price at which stock should be bought to realize a specified rate of income.

1. At what price should stock paying 9% annual dividends, be bought, to yield an income of $7 \frac{1}{2} \%$?

Explanation.-Since the annual dividend or income per share is $\$ 9$, this must be $7 \frac{7}{2} \%$ of the price; $\$ 9 \div .07 \frac{1}{2}$, equals 120 ; hence, $\$ 120$ is the buying price.

Formula: Dividend \div Rate of Income $=$ Buying Price. (341.)

What must be paid
2. For 6% stock to yield an income of 8% ? Of 10% ?
3. For 8% stock to realize 6% ? 7% ? 10% ? 12% ?
4. At what price must 5 's be bought, to pay as well as 6 's bought at par ?
5. What must I pay the government for $4 \frac{1}{2}$'s of ' 91 , to realize 7\% on my investment?

Review

406. Problems in Percentage which do not involve the element of time.
407. Find 40% of 6 hr .28 min .15 sec .
408. What is 104% of 75 A. 80 P.? Of 1 T. 5 cwt. 25 lb .?
409. Bought 120 yd . of cloth, and found that it lacked 10 yd . of full measure. What per cent. did I lose ?
410. A man saves $\$ 562 \frac{1}{2}$ a year, which is $3 \% \frac{1}{2} \%$ of his salary. What is his salary?
411. A drover having 45 head of cattle, sold 36 head for what the whole cost him. What was his gain per cent.?
412. A farmer sold 75 A .80 P . of land, which was 40% of his whole farm. What was the value of his whole farm, at $\$ 32.60$ an acre?
413. Bought 120 tons of coal for $\$ 408$. If sold at an advance of 35%, what was the profit per ton?
414. If the insurance on $\$ 5600$ worth of goods from New York to New Orleans is $\$ 70$, what is the rate of insurance?
415. For what amount must merchandise valued at $\$ 8000$ be insured, at $3 \frac{1}{2} \%$, so as to receive this sum and the premium in case of total loss?
416. What is $\frac{3}{4}$ of a farm worth, if $\$ 258 \% .50$ is 15% more than $\frac{9}{20}$ of its value?
417. What are the net proceeds of a sale of $\$ 16400$, commission $2 \frac{1}{2} \%$, and other charges $\$ 500$?
418. If a lot of damaged goods are sold for $\$ 563.20$, at a loss of 12%, what did they cost?
419. 1980 is 10% of 120% less than what number?
420. Silicate slates, marked 25 cents, are bought at 20,10 , and 10% off, and sold at an advance of 10 and 5% on the marked price. What is the gain per cent.?
421. What per cent. of the long ton is the short ton?
422. Sold part of a consignment of flour, at $\$ 10 \frac{1}{2}$ per bbl., realizing a profit of 25%, but was obliged to sell the remainder at $\$ 8.40$ per bbl. What was the gain or loss on this?

1\%. A lawyer receiving 5% for collection, received from one client $\$ 75$, from another $\$ 84.50$, and from another $\$ 200$; what were the respective amounts collected?
18. Sold a piece of property at a loss of 16%, or $\$ 640$ less than it cost. What would it have brought, had it been sold at a profit of 16% ?
19. If I receive $\$ 558$ as my share of a 9% dividend, how many shares of stock, at $\$ 50$ each, do I own?
20. A speculator bought 25 shares of bank stock ($\$ 100$), at a discount of $3 \frac{1}{4} \%$, and sold it at $1 \frac{1}{2} \%$ premium. What was his gain?
21. A tax collector pays over $\$ 126740$, and retains $\$ 1901.10$. What rate per cent. is allowed him for collection?
22. Sent $\$ 5128.05$ to a broker in Cincinnati, with directions to purchase pork at $\$ 12 \frac{1}{2}$ per bbl., to insure it for 60 da., at 15 cents a $\$ 100$, to pay storage, at 5 cts. a bbl., for 10 days, and to deduct his commission of 2% on the money expended. How many barrels of pork did he buy?
23. If from the retail price of a book, 20 and 10% are deducted, and the book then sells for $\$ 1.25$, what is the retail price, and the rate of discount?
24. Received as net proceeds of a consignment $\$ 1520$, after paying a commission of $2 \frac{1}{2} \%$ for selling. What was the amount of sales?
25. Imported 28 bags of canary seed, gross weight 4284 $\mathrm{lb} .$, tare 84 lb . What was the duty paid, at $\$ 1$ per bushel of 60 lb .?
26. Mr. Brown's tax is $\$ 621.50$; he pays for 3 polls, at $\$ 2.25$ each ; the rate is 4 mills on the dollar. What is the valuation of his property?

27 . Sold 56 acres of land for $\$ 204 \% .50$, which was 10% less than the asking price, but a gain of $62 \frac{1}{2} \%$. What was the asking price, the cost per acre, and the profit?
28. An agent bought 3000 lb . of wool at $\$.46$ a pound, and paid $\$ 7 \frac{1}{2}$ for insurance, $\$ 6.25$ for cartage, his commission being $2 \frac{3}{4} \%$. What was the amount of his bill to his principal?
29. If the net earnings of a company with a capital of $\$ 250000$ are $\$ 1 \% 000$, and $\$ 7000$ are reserved for expenses, what rate of dividend can be declared, and what is the dividend on 35 shares, par value $\$ 100$?
30. If stock paying 10% dividends is bought at $112 \frac{1}{8}$, brokerage $\frac{1}{8} \%$, what per cent. of income will it yield?
31. A cotton mill valued at $\$ 150000$ is insured as follows: in Co. A for $\frac{1}{3}$ its value, at $\frac{3}{5} \%$; in Co. B for $\frac{1}{4}$ its value, at $\frac{3}{4} \%$; in Co. C for $\frac{1}{6}$ its value, at $\frac{2}{3} \%$; in Co. D for $\frac{1}{8}$ its value, at $\frac{1}{2} \%$. What is the total annual premium, and in case of loss by fire to the amount of $\$ 25000$, what is due from each company?
32. For what amount must a policy be made to insure $\$ 12500$ and the premium, at $3 \frac{1}{2} \%$, and what is the premium?
33. What must be paid for stocks yielding 8% dividends, to realize an annual income of 10% ?
34. The Continental Ins. Co. took a risk at $2 \frac{1}{4} \%$, and reinsured $\frac{3}{5}$ of it in the Royal Ins. Co., at $2 \frac{1}{2} \%$. The premium received was $\$ 72$ more than was paid; what was the amount of the risk?
35. A tax of $\$ 22 \% 68$, besides $3 \frac{1}{4} \%$ paid for collection, is to be raised in a certain town. There are 760 polls, assessed at $\$ 1 \frac{1}{4}$ each ; the real estate is assessed at $\$ 700000$, and the personal property at $\$ 62000$. Find the tax rate, and a person's tax whose real estate is valued at $\$ 12500$, personal property at $\$ 2500$, and who pays for 2 polls ?
36. A man owning 250 shares of bank stock received a semi-annual dividend of $\$ 1125$. What was the rate?

3\%. S. G. \& Co. of New York received per steamer Gallia, goods invoiced as follows:

480 yd . Broadcloth, weight $265 \mathrm{lb} .$, cost 14s. sterl. per yd. 1860 " Brus’ls Tapestry, $\frac{3}{4}$ yd. wide, " \%s. 6d. " "
640 " Thread Lace, " 8s. " "
The duty on broadcloth was $\$.50$ per lb. and 35%; on tapestry, 28 cents per square yard and 30%; and on lace, 25%. What amount of duty was paid, allowing the pound sterling to be $\$ 4.866 \frac{1}{2}$?
38. Bought stock at $3 \frac{1}{2} \%$ discount, and sold the same at a premium of $2 \frac{1}{4} \%$, gaining $\$ 258 . \% 5$. What was the par value of the stock?
39. If by selling broadcloth $\$.75$ per yard above cost, I gain $12 \frac{1}{2} \%$, how much must I advance the price to realize a profit of 20% ?
40. A store rents for $\$ 2000$, and the tax on the same is $2 \frac{1}{2} \%$, on a valuation of $\$ 22000$. The owner sells it for $\$ 35000$, and invests the money in stock at 91 , that pays a dividend of 7%. Is his yearly income increased or diminished, and how much?
41. If $\frac{5}{8}$ of a barrel of pork is sold for what the whole barrel cost, what per cent. is gained on the part sold?
42. A grocer imported $6 \check{0}$ hhd. of sugar, each weighing 4 cwt. 2 qr. 16 lb ., invoiced at 6 cts per lb., tare allowed, 36 lb . per hhd., duty $2 \frac{1}{2}$ cts. per lb. and 20% additional ; also, 35 hh . of molasses, 84 gal . each, invoiced at 20 cts. per gal., 4% being allowed for leakage, duty $4 \frac{1}{2}$ cts. per gal. and 25% additional. What was the entire amount of duty?
43. What rate of income will be realized from money invested in stock paying a semi-annual dividend of 5%, purchased at $8 \% \frac{1}{2}$, brokerage $\frac{1}{4} \%$?

NTRESTR

INDUCTIVE EXERCISES.

40\%. 1. If money is loaned at 6% a year, what decimal part of the money borrowed equals the sum paid for its use? If loaned at 7% ? 8% ? $5 \frac{1}{2} \%$? 10% ?
2. At 6%, how many dollars must be paid for the use of $\$ 100$ for 1 year? For 2 yr ? 3 yr ? 5 yr.?

3 . At 5%, how many dollars must be paid for the use of $\$ 200$, for 1 yr ? $\$ 200$, for 3 yr ? $\$ 400$, for 2 yr ?
4. If $\$ 6$ are paid for the use of $\$ 100$ for 1 yr., what is the rate per cent.? If $\$ 18$ are paid for the use of $\$ 100$ for 3 yr ?
5. If I borrow $\$ 200$, and agree to pay 6% a year for its use, how much shall I owe the lender at the end of 2 yr .?

2DEFINITIONSC

408. Interest is money paid for the use of money.
409. The Principal is the money, for the use of which interest is paid.
410. The Rate of Interest is the per cent. of the principal paid for its use one year.
411. The Amount is the sum of the principal and in. terest.
412. Legal Interest is at the rato fixed by law.
413. Usury is interest at a higher than the legal rate.

When the rate of interest is not specified in notes, accounts, con. tracts, etc., the legal rate is always understood.
414. In some States, a higher than the legal rate is allowed, if agreed to in writing, as shown in the following

Table of Legal Rates.

States.	Rate \%.		States.	Rate\%.		States.	Rate\%.		States.	Rate\%	
Ala.	8			6	8	Mo	6	10	S. C.....	7	Any.
Ark.	6		Ind	6	10	Montana	10		Tenn...	6	10
Arizona	10	Any.	Iowa	6	10	N. H.	6		Texas	8	10
Cal...	10		Kan.	7	12	N.	7		Utah.	10	Any.
Conn.	6		Ky.	6	10	N. Y	6		Vt.	6	
Colo.	10	Any.		5	8	N. ${ }^{\text {C }}$	6	8	Va.	6	
Dako	7	Any.	Main	6	Any.	Neb	10	$\xrightarrow{12}$	W.	${ }_{10}^{6}$	
D.C..	6	10	Mass	6	Any.	Ohio	6	Any.	W is	10	${ }_{10}$ Any.
Fla.	8	Any.	Mich	7	10	Oregon	10	12	Wy	12	Any.
Ga.	7	12	Minn	7	12	Penn	6				
Idaho.	10		Mi	6	10	R. I	6	Any.			

The legal rate in England and France is 5\% ; in Canada and Nova Scotia, 6\%.
415. Corresponding terms of Interest and Percentage:

1. The Principal is the Base.
2. The Rate \% per Annum is the Rate.
3. The Interest is the Percentage.

The sum of the principal and the interest is the Amount.
4. Time is an additional element introduced, to be considered always in connection with the rate \% per annum.
416. Principle. Interest is the product of three factors, the principal, rate \% per annum, and time expressed in years.

If any three elements are given, the fourth may be found.
Of the various methods of computing interest, three of the most simple and practical are presented in this work.

1. As the legal rate of interest in the majority of the States is 6%. the six per cent. method is selected, as likely to be largely used.
2. The method by cancellation being uniformly applicable to any rate and time, and also simple, brief, and easily understood, is eswecially commended to the attention of the learner.

路. The method by Tables, which is in very general use among business men.

Written Exercises.

41\%. To find the Interest and the Amount.

1. Find the interest and the amount of $\$ 24 \% .50$, for 3 yr . 4 mo., at 8%.

Explanation. Since the int. of any sum at 8%, for 1 yr ., is .08 of the principal, the product of $\$ 247.50$ by .08 , which is $\$ 19.80$, is the int. for 1 yr . ; and the int. for 3 yr .4 mo., or $3 \frac{1}{3} \mathrm{yr}$., is $3 \frac{1}{3}$ times $\$ 19.80$, or $\$ 66$, the required interest; and $\$ 247.50+\$ 66=\$ 313.50$, the amount. Hence,
operation.
$\$ 24 \% .50$ Principal.
. 08 Rate.
$\$ 19.8000 \quad$ Interest for 1 year.
$3 \frac{1}{3}$ Time in years.
$\$ 66.000 \quad$ Int. for 3 yr. 4 mo .
$\$ 24 \% .50 \quad$ Principal.
$\$ 313.50$ Amount.

Formulas: $\left\{\begin{array}{l}\text { 1. Principal } \times \text { Rate } \% \times \text { Time }=\text { Interest } . \\ \text { 2. Principal }+ \text { Interest }=\text { Amount } .\end{array}\right.$
In computing interest, the partial results need not be carried to more than four decimal places.

Find the interest of
2. $\$ 75$, for 4 yr., at 6%; for 3 yr. 6 mo., at 7%; at 8%.
3. $\$ 135.70$, for 2 yr .3 mo., at 5%; for 1 yr .9 mo., at $6 \frac{1}{4} \%$.
4. $\$ 762.40$, for 3 yr .3 mo., at 8%; for 2 yr .4 mo., at 10%.
5. \$2684.80, for 6 yr .6 mo. , at 7%; for 9 mo ., at 8%.
6. $\$ 1500$, for 4 yr .8 mo., at $4 \frac{1}{2} \%$; for 5 yr .2 mo., at 12%.

Find the amount of
7. $\$ 8 \% .60$, for 10 mo., at 8%; at $7 \% ; 6 \% ; 12 \%$.
8. $\$ 564.80$, for 2 yr .4 mo., at $6 \frac{1}{4} \%$; for 3 yr .9 mo., at 7%.
9. A owes a note for $\$ 1200$ and interest, at 6% for 2 yr . 4 mo. If he pays $\$ 853.50$ on it, how much is still unpaid?
10. If a man borrows $\$ 15 \% 5$, at 6%, and loans it immediately at $7 \frac{1}{2} \%$, what does he gain by the operation in 9 mo ?
11. Find the interest of $\$ 216.50$ for 1 yr .5 mo .18 da., at 7%.

Explanation.-The int. for 1 yr . is .07 of the principal, or $\$ 15.155$; the int. for 1 mo . is $\frac{1}{18}$ the int. for 1 yr ., which is $\$ 1.2629$; and for 1 yr. 5 mo . 18 da., or 17.6 mo., it is $17 . v^{0}$ times $\$ 1.2629$, which is $\$ 22.23$, the interest required.

Since 30 days are reckoned
 as a month, 3 days is $\frac{1}{10}$ (.1) of a month ; hence, any number of days is readily reduced to tenths of a month by dividing by 3 ; thus, 18 da. equals .6 of a month ; 19 da., . $6 \frac{1}{6}$ of a month, etc.

Find the interest of
12. $\$ 540$, for 9 mo. 15 da., at 6%; 7%; 8\% ; 12\%.
13. $\$ 636.40$, for 1 yr .1 mo 12 da., at 5%; for 10 mo . 20 da., at 6\%.
14. $\$ 1000$, for 2 yr .2 mo .9 da., at $4 \frac{1}{2} \%$; at $6 \frac{1}{2} \%$.
15. $\$ 960$, at 6%, for 11 mo .4 da. ; for $5 \mathrm{mo} .2^{7} \%$ da., at 7%.
16. $\$ 21 \% 5$, at $\% \%$, for 1 yr .15 da.; for 3 mo .12 da., at 8%.

1\%. $\$ 428.80$, at 8%, for ${ }^{7} \mathrm{mo} .14$ da. ; for 2 yr .24 da.
18. $\$ 1500$, at 10%, for 1 yr .11 mo . for 10 mo .10 da., at 12%.
19. Find the interest and the amount of $\$ 3 \% 4.60$ from Sept. 4, 18\%9, to June 20, 1881, at 8%.
20. If a man pays $\$ 3 \% 5$ a year rent for a dwelling, would he gain or lose, and how much, in 4 yr. 6 mo., by borrowing $\$ 4500$ at 6%, to purchase the house?
21. What is the int. of $\$ 1630$ from April 1, 18\%8, to Oct. 10, 1882, at 6% ?
22. Bought a piece of property for $\$ 6500$, and agreed to pay for it in 8 mo. 15 da., with interest at 7%. What amount was due at the expiration of the time?

418. SIX PER CENT. METHOD.

The interest of \$1 at 6%
For 12 mo., or 1 year, is 6 cents, or .06 of the principal.

Hence, the following
419. Principles.-I. The interest of any sum of money at 6%, is one half as many hundredths of the principal as there are months in the given time.
II. The interest of any sum of money at 6%, is one sixth as many thousaidths of the principal as there are days in the given time.

Thus, the interest on any sum for 1 yr .4 mo . (16 mo .) is $\frac{1}{3}$ of .16 , or .08 of the principal ; for 1 yr .5 mo . (17 mo .) it is .085 ; for 2 mo .12 da . (72 da .) it is $\frac{1}{6}$ of .072 , or .012 of the principal ; for 26 da., $.004 \frac{1}{3}$; etc.

Written Exercises.

420. 421. What is the interest of $\$ 255$ for 1 yr . 5 mo . 15 da., at 6% ?
Explanation.The int. of any sum for 1 yr .5 mo .15 da ., at 6%, is $.087 \frac{1}{2}$ of the prin.; $\$ 255 \times .087 \frac{1}{3}=$ $\$ 22.31$,the requiredint.
operation.

$$
\begin{aligned}
1 \text { yr. } 5 \mathrm{mo} & =17 \mathrm{mo} \\
\frac{1}{2} \text { of } .17 & =.085 \\
\frac{1}{6} \text { of } .015 & =.002 \frac{1}{2} \\
\text { Int. } & =.087 \frac{1}{2} \text { of Prin. }
\end{aligned}
$$

Rule. Multiply the principal by the decimal expressing one half the number of months as hundredths, and one sixth the number of days as thousandths; the product will be the interest at 6%.

To find the interest at any other rate per cent., divide the interest at 6% by 6 , and multiply the quotient by the given rate.

Find the interest, at 6%, of
2. $\$ 840$, for 8 mo .15 da .
3. $\$ 216.40$, for 5 mo .24 da .
4. $\$ 148$, for 2 yr .3 mo .
5. $\$ 1026$, for 1 yr .1 mo .20 da .
6. $\$ 98.60$, for 11 mo .28 da. 11. $\$ 1208.50$, for 1 mo .13 da

Find the interest, at $5 \%, 7 \%$, and 8%, of
12. $\$ 750$, for 1 yr. 1 mo. 3 da. 15 . $\$ 4562.50$, for 2 mo .21 da. 13. $\$ 910$, for 2 mo .11 da . 16. $\$ 5000$, for 3 mo .10 da. 14. $\$ 256.40$, for 90 days.
17. $\$ 1476.90$, for 127 days.
18. What is the amount of $\$ 3725$ from Oct. 10,1880 , to May 15, 1882, at $4 \frac{1}{2} \%$?

METHOD BY CANCELLATION.

421. This method will commend itself to the judgment of the practical teacher, on account of its simplicity and its application to any rate and time.
422. The following Formulas cover all cases of simple interest that can arise :
423. When the time is expressed in years,

Principal \times Rate $\% \times$ Time $=$ Interest (already illustrated).
2. When the time is expressed in months,

$$
\frac{\text { Principal } \times \text { Rate } \% \times \text { Time }}{12}=\text { Interest } .
$$

3. When the time is expressed in days,

$$
\frac{\text { Principal } \times \text { Rate } \% \times \text { Time }}{360}=\text { Interest. }
$$

Written Exercises.

423. 424. What is the interest of $\$ 92.40$ for 1 yr .4 mo ., at 6% ?

Explanation. Since the interest on any sum for 1 yr ., at 6%, is .06 of the principal, $\$ 92.40 \times .06$ gives the int. for 1 yr ., or 12 mo . This product divided by 12 gives the int. for 1 mo., which multiplied by 16 , the number of months in the given time, gives $\$ 7.39$, the
operation.
 required interest.

Or, $\frac{16}{12}$ of 1 year's interest equals the required interest.
2. Find the interest of $\$ 150$ for 36 days, at 7%.

Explanation. Since the int. on any sum for 1 yr ., operation. at 7%, is .07 of the principal, $\$ 150 \times .07$ gives the int. for 1 yr ., or 360 da . This divided by 360 gives the int. for 1 da., which multiplied by 36 gives $\$ 1.05$, the required interest.

Or, $\frac{36}{360}$ of the int. for 1 yr . gives the required int.

$\xlongequal{\$ 6 \emptyset} |$| $\$ 15 \emptyset$ |
| :--- |
| .07 |
| $\$ 6$ |
| $\$ 1.05$ |

Rule. 1. On the right of a vertical line, place the principal, rate, and time. If the time is in years, place 1 on the left; if in months, place 12 on the left; if in days, 360, or its factors, 12 and 30. For "Exact Interest" (424) use 365.
2. Cancel equal factors, if any, on opposite sides of the line, and the product of the remaining factors on the right, divided by the factor on the left, if any, will give the required interest.

Proof. Place the answer obtained on the left, in the statement as first written, and.if the work all cancels, it is correct: but if anything remains on either side of the line, the answer is wrong.

Some examples do not admit of cancellation, but by preserving the method the operations will be correctly indicated.
3. Find the interest of $\$ 40 \frac{2}{3}$ for 7 mo .10 da., at $\frac{3}{4} \%$ a mo.

Explanation. $\$ 40 \frac{2}{3}$ is $\$ \frac{12}{3}{ }^{2} ; 7 \mathrm{mo} .10 \mathrm{da}$. is $7 \frac{1}{3}$, OPERATION. or $\frac{22}{3}$ mo., and $\frac{3}{4} \%$ a mo. is 9% a year. Or, the time may be reduced to days, 220 da., and 360 placed on the left.

The pupil is already familiar with the arrangement of placing numerators, or dividends, on the right, and denominators, or divisors, on the left of the vertical line. (181.)

\%	12p ${ }^{61}$
${ }^{4} \mathrm{x}$. $\varnothing 9$
3	22^{11}
3	6.71
	\$2.236

4. Find the interest of $\$ 218$ for 9 mo .18 da., at $\% \%$, and for 3 mo .12 da., at ${ }^{7} 7 \frac{1}{2} \%$.

Explanation. 9 mo. 18 da. is 93 , or 9.6 mo., or 288 days ; 3 mo . 12 da. is $3 \frac{2}{5}, 3.4$ mo., or 102 days. If the rate is a mixed number, it may also be expressed in the form of a common or a decimal fraction. Thus, $7 \frac{1}{2} \%$ is $\frac{15}{2} \%$, or .075 . Either form may be used.

5. Find the interest of $\$ 750$ for 14 da., at $1 \frac{1}{2} \%$ a mo. ; for 4 mo. 24 da., at $12 \frac{1}{2} \%$; for 7 mo. 6 da., at $\frac{2}{3} \%$ a month.

operation.					
	\$75 ${ }^{\text {¢ }}$		\$750		\$750
	. 18		. 125		. 08
\$ $\$ \varnothing$	14 4^{7}	12	4.8^{4}	¢ 2	7.2. ${ }^{6}$
	\$5.25		\$3\%.50		\$36

The explanations already given of similar examples are sufficient to make the above operations fully understood.

Find the interest, by either method, of
6. $\$ 420$, for 2 yr .4 mo , at 7%; at 8%; at 10%.
\%. $\$ 64.60$, for 10 mo. 21 da., at 6%; at $5 \frac{1}{2} \%$; at 4%.
8. $\$ 1000$, for 9 mo .12 da., at 2% a mo. ; at $\frac{3}{4} \%$ a mo.
9. $\$ 1 \%$, for 60 days, at 7%; at 10%; at $\frac{1}{2} \%$ a mo.
10. $\$ 364.50$, for 19 da., at 2% a mo. ; at $\frac{7}{8} \%$ a mo.
11. $\$ 2364.80$, for 90 da., at $6 \frac{1}{4} \%$; for 63 da., at $5 \frac{1}{2} \%$.
12. $\$ 540$, for 6 yr .5 mo ., at 7%; for 3 yr .6 mo., at 8%.
13. $\$ 2500$, for 84 da., at $1 \frac{1}{4} \%$ a mo. ; for 65 da., at $1 \frac{1}{2} \%$ a month ; for 63 da., at 6%.
14. What is the amount of $\$ 4500$, for 20 da., at 8% ?
15. What is the amount of $\$ 360.40$, for 1 yr .24 da., at 1% a mo.? At $\frac{3}{4} \%$ a mo. ?
16. What is the amount of $\$ 5000$, for 63 da., at 8% ?

1\%. If $\$ 2150$ is placed at interest May 10, 18%, what amount will be due Jan. 1, 1881, at 6% ?
18. If a man borrows $\$ 6500$ in New York, and loans it in Michigan, at legal interest, what is his gain in 1 yr. 5 mo.?
19. If I borrow $\$ 4550$ in Connecticut, and loan it in Texas, what do I gain in 3 yr .9 mo . ?
20. A note for $\$ 900$, on int., 6%, after 3 mo., was given May 10, $18 \% 9$, and paid Sept. 4,1881 . What was the amt. due?
21. What is the interest on a note for $\$ 500$, dated June 10 , 1880, and paid Jan. 3, 1881, at 1% a month?
22. What amount is due on a note for $\$ 125$ that has run 60 days, with \%\% interest?
424. Exact Interest is obtained by reckoning 365 days to the year, instead of 360 da., the latter being 5 da., $\frac{5}{365}$ or $\frac{1}{73}$ less than a common year ; 6 da., $\frac{6}{366}$ or $\frac{1}{61}$ less than a Leap Year.

For example, the exact interest of any sum for 45 da . is $\frac{45}{365}$ of the interest for 1 year ; but this is $\frac{1}{75}$ less than that obtained by the ordinary methods. Hence,

Rule. Find the interest for years and aliquot parts of a year by the common method, and for days take as many 365ths of 1 year's interest as there are days. Or,

When the time in days is less than 1 year, find the interest by the ordinary method; then diminish this result by $\frac{1}{7}$ for a common year, or by $\frac{1}{61}$ for a leap year.

Written Exercises.

425. 426. What is the exact interest of $\$ 960$, for 63 days $_{2}$ at 8% ?

> OPERATION.
\$192

	\$ $\$$ ¢ ${ }^{\text {d }}$
73	. 08
\$6.5	63
73	96\%.68
	13.256

\$8

	\$9¢ø	
	. 08	
\$ $6 \emptyset$	$6 \21	
	\$13.44	mmon method ;

$\$ 13.44-\left(\frac{13 \cdot 44}{73}\right)=\$ 13.256$, exact int.

Find the exact interest, by either method,
2. Of $\$ 450$, for 75 da., at 6%.
3. Of $\$ 1250$, for 104 da., at $\% \%$.
4. Of $\$ 650.50$, for 93 da., at 8%.
5. Of $\$ 250$, for 33 da., at 6%.
6. Of $\$ 384.80$, for 28 da., at $5 \frac{1}{2} \%$.
7. Of $\$ 816.40$, for 126 da., at $6 \frac{1}{4} \%$.
8. Find the interest on a $\$ 1000$ U. S. Bond, at 5%, from May 1 to Oct. 20. From April 10 to Aug. 16.
9. Find the difference between the exact interest of $\$ 845$, at 8%, for 1 yr. 2 mo. 24 da., and the interest computed by the ordinary methods.
10. Find the interest on $\$ 2500$, at $5 \frac{1}{2} \%$, from Oct. 10 , 1880 to May 9, 1881.
11. What is the difference between common and exact interest of $\$ 9 \% 5$, at 6%, from April 4, 1881 to Aug. 10, 1882 ?

12 . What is the exact amount of $\$ 584.50$, at 10%, from Jan. 1, 1879 to March 12, 1880 ?
13. What is the interest, at 6%, on three $\$ 500 \mathrm{U} . \mathrm{S}$. Bonds from March 1 to Sept. 10 ?
14. What is the exact amount of $\$ 1200$, at 8%, from June 5 to Sept. 15?

WRITTEN EXERCISES.
426. To find the Principal, when the interest or the mount, and the rate and the time are given.

1. What principal will gain $\$ 105$ in 2 yr .4 mo , at 6% ?

Explanation. - The int. of any sum of money for a given time, at a given rate, is the int. of $\$ 1$ taken as many times OPERATION. Int. on $\$ 1$, for $2 \frac{1}{3} \mathrm{yr}$., at $6 \%=\$.14$. $\$ 105 \div \$.14=750$ times. $\$ 1 \times{ }^{7} 50=\$ 750$, Prin as there are dollars in the principal ; and since the int. of $\$ 1$ for $2 \frac{1}{3} \mathrm{yr}$. is $\$.14$, the principal is as many times $\$ 1$ as $\$.14$ is contained times in $\$ 105$, which is 750 times; 750 times $\$ 1$ equals $\$ 750$, the required principal.
2. What sum will amount to $\$ 855$ in 2 yr .4 mo., at 6% ?

Since the am't is the principal plus the int., the am't must contain $\$ 1$, plus the int. for the given time and rate, as

OPERATION.
Am't of $\$ 1$ for $2 \frac{1}{3} \mathrm{yr}$., at $6 \%=\$ 1.14$. $\$ 855 \div \$ 1.14=750$ times. $\$ 1 \times 750=\$ 750$, Prin. many times as there are dollars in the principal. Hence,

Formulas: $\left\{\begin{array}{cc}\text { 1. } & \frac{\text { Interest }}{\$ 1 \times \text { Rate } \% \times \text { Time }} \\ 2 . & \frac{\text { Amount }}{\$ 1+\$ 1 \times \text { Rate } \% \times \text { Time }}\end{array}\right\}=$ Principal.

What Principal

3. Will gain $\$ 218.40$ in 4 yr. 8 mo., at 6% ? At 8% ?
4. Will gain $\$ 35 \%$ in 3 yr .6 mo .15 da., at 8% ? At 10% ?
5. Will gain $\$ 1290.78$ in 2 yr .4 mo. 5 da., at $\% \%$? At 4% ?
6. Will amount to $\$ 228.60$ in 2 yr .4 mo. 18 da., at 6% ?
\%. Will amount to $\$ 3160.8^{\text {ry }}$ in ${ }^{17} \mathrm{mo}$. ${ }^{\text {ry }}$ dan, at 7% ?

42\%. To find the Rate when the principal, interest, aurl time are given.

1. At what rate will $\$ 640$ gain $\$ 192$ int. in 3 yr. 9 mo .?

Explanation.-The int. is as many times 1% of the given principal as there are units in the rate.
operation.
Int. of $\$ 640$, at 1% for $3 \frac{3}{4} \mathrm{yr} .=\$ 24$. $\$ 192 \div \$ 24=8$ times. $1 \% \times 8=8 \%$, Rate.

Since the int. of $\$ 640$ for $3 \frac{3}{3} \mathrm{yr}$. at 1% is $\$ 24$, the rate is as many times 1% of the principal as $\$ 24$ is contained times in $\$ 192$, which is 8 times; 8 times 1% equals 8%, the required rate. Hence,
Formula : Interest $\div($ Principal $\times 1 \% \times$ Time $)=$ Rate $\%$ 。
At what Rate per cent.
2. Will $\$ 325.41$ gain $\$ 54.235$ in 3 yr .4 mo .?
3. Will $\$ 4180$ gain $\$ 189.37 \%$ in 7 mo. 23 da.?
4. Will $\$ 3325$ gain $\$ 119.70$ in 10 mo .24 da.?
5. Will $\$ 844.75$ amount to $\$ 910.22$ in 93 da.?
6. At what rate per month will $\$ 1200$ gain $\$ 24$ in 60 da.?
\%. A man invests $\$ 9640$ so that it yields him an annual income of $\$ 1156.80$. What is the rate of interest?
8. At what rate per annum will any sum double itself in 5 yr ? In $8 \frac{1}{3} \mathrm{yr}$.? In 12 yr .6 mo .?

At 1% any sum will double itself in 100 yr . To double itself in 5 yr ., the rate must be as many times 1% as 100 yr . is times greater than $5 \mathrm{yr} .100 \mathrm{yr} . \div 5 \mathrm{yr} .=20$. Hence, the required rate is 20%.
9. What is the rate of interest when $\$ 5000$ yields an ncome of $\$ 125$ a month?
i0. A note for $\$ 320$ with interest from May 10, 1879 to Sept. 4, 1881 amounted to $\$ 365.48$. What was the rate of interest?
11. At what rate will $\$ 560$ in 2 yr . produce the same interest as $\$ 672$, at 5%, in 3 yr. ?
428. To find the Time, when the principal, interest, and rate are given.

1. In what time will $\$ 360$ gain $\$ 88.20$, at 7% ? operation.
$\$ 360 \times .0 \%=\$ 25.20$, Int. for 1 year.
$\$ 88.20 \div \$ 25.20=3.5$ times.
$1 \mathrm{yr} . \times 3.5=3 \mathrm{yr} .6 \mathrm{mo}$., Time.
Explanation. Since the int. is the product of three factors, viz., the principal, rate, and time, the time must be the quotient of the interest divided by the product of the other two factors, viz., the principal and the rate $\%$. Since the product of these two factors is $\$ 25.20$, or the int. on the principal for 1 yr., the time is as many years as $\$ 25.20$ is contained times in $\$ 88.20$, which is 3.5 times; 3.5 times 1 yr . equals $3 \frac{1}{2}$ yr., or 3 yr .6 mo ., the required time. Hence,

Formula: Interest $\div($ Prin. \times Rate $\%)=$ Time.
In what Time
2. Will $\$ 415.50$ gain $\$ 55.40$, at 10% ?
3. Will $\$ 3 \% 03.92$ gain $\$ 418.23$, at 8% ?
4. Will $\$ 530$ amount to $\$ 602.8 \% 5$, at 6% ?
5. Will $\$ 512.60$ amount to $\$ 538.32$, at 7% ?
6. In what time will any sum of money double itself, at simple interest, at 5% ? $6 \frac{1}{4} \%$? 8% ? 7% ? 10% ?

At 5%, it will require as many years as 5% is contained times in 100%, or 20 yr .
\%. In what time will the interest of $\$ 500$, at 6%, equal the principal? Equal one-half the principal? Twice the principal ?
8. In what time will $\$ 1203.03$ amount to $\$ 136 \% .84$, at 6% ?
9. A certain sum of money, at 5%, in 3 yr .6 mo., gained $\$ 147$ interest. In what time will the same sum of money gain \$115.20, at 6% ?
10. How long must I keep on deposit \$932.50, at 8%, to pay a debt of $\$ 1066.16$?
429. Bankers, merchants, and business men, very generally, compute interest, both simple and compound, by means of tables. The following table shows the simple interest of $\$ 1$, or the number of hundredths to be taken of any principal, at $5,6,7$, and 8%, for years, months, and days:

Yr.	5\%	6\%.	7%	8\%.	Yr.	5	6\%.	7%.	8\%.
1	. 05	. 06				. 20	24	. 28	32
2	. 10	. 12	. 14	. 16	5	. 25	. 30	. 35	40
3	. 15	. 18	. 21	. 24	6	. 30	. 36	. 42	48
					Mo.				
1	. 0041	. 005	. 005	. 00666	7	. 02916	. 035	. 04083	. 04666
2	. 00833	. 01	. 01166	. 01333	8	. 03333	. 04	. 04666	. 05333
3	. 01250	. 015	. 01750	. 02000	9	. 03750	. 045	. 05250	. 06000
4	. 01666	. 02	. 02333	. 02666	10	. 04166	. 05	. 05833	. 06666
5	. 02083	. 025	. 02916	. 03333	11	. 04583	. 055	. 06416	. 07333
6	. 02500	. 03	. 03500	. 04000	Da.				
1	. 0001	. 00016	. 00019	. 00022	16	. 00222	. 00266	. 00311	. 00355
2	.00027	. 00033	. 00038	. 00044	17	. 00236	. 00283	. 00330	. 00377
3	. 00041	. 00050	. 00058	. 00066	18	. 00250	. 00300	. 00350	. 00
4	. 00055	. 00066	. 00077	. 00088	19	. 00263	. 00316	. 00369	. 00422
5	. 00069	. 00083	. 00097	. 00111	20	. 00277	. 00333	. 00388	. 00
6	. 0008	. 00100	. 00116	. 00133	21	. 00291	. 00350	. 00408	004
7	. 00097	. 00116	. 00136	. 00155	22	. 00305	. 00366	. 00427	. 00488
8	. 00111	. 00133	. 00155	. 00177	23	. 00319	. 00383	. 00447	. 00511
9	. 00125	. 00150	. 00175	. 00200	24	. 00333	. 00400	. 00466	. 00533
10	. 00138	. 00166	. 00194	. 00222	25	. 00347	. 00416	. 00486	. 055
11	. 00152	. 00183	. 00213	. 00244	26	. 00361	. 00433	. 00505	005
12	. 00166	. 00200	. 00233	. 00266	27	. 00375	. 00450	. 00525	. 00600
13	. 00180	. 00216	. 00252	. 00288	28	. 00388	. 00466	. 00544	. 00622
14	. 00194	. 00233	. 00272	. 00311	29	. 00402	. 00483	. 00563	. 00644
15	. 00208	.00250	. 00291	. 00333					

1. Find, by the table, the interest of $\$ 325.60$, for 2 yr . 5 mo .12 da., at 6%.

The int. of $\$ 1$ for the given time $=\left\{\begin{array}{cccc}\$.12 & \text { Int. } & \text { for } & 2 \mathrm{yr} . \\ .025 & \text { " } & \text { " } & 5 \mathrm{mo} \\ .002 & \text { " } & \text { " } & 12 \mathrm{da} .\end{array}\right.$
The int. of $\$ 1$ for 2 yr . 5 mo .12 da . is $\$.147$. Hence,
The interest of $\$ 325.60$ for the same time is .147 of $\$ 325.60$; $\$ 325.60 \times .147=\$ 47.86$, the required interest.

In like manner, find, at 7%, the interest of 2. $\$ 456$, for 1 yr .9 mo .20 da . 5 . $\$ 1500$, for 4 yr . 28 da. 3. $\$ 1364$, for 3 yr .1 mo .9 da. 6. $^{2} \$ 962 \frac{1}{2}$, for 6 yr .11 mo . 4. $\$ 184 . \%$, for 11 mo .27 da. $\%$. $\$ 53 \% .50$, for 2 yr .10 mo .
430. Compound Interest is interest on the interest added to the principal when it becomes due, the amount forming a new principal for the next period.

The int. may be compounded, or added to the principal, at the end of any period agreed upon, as annually, semi-annually, quarterly, etc.

Written Exercises.

431. 432. Find the amount and the compound interest of $\$ 650$, for 2 yr .4 mo., at 6%.

Explanation. Since the amt. of any sum at 6% is 1.06 of the principal, the amt. of $\$ 650$ at the end of the 1st yr. is $\$ 689$, which is the principal for the $2 d$ year. In the same manner we find $\$ 730.34$, the amt. at the end of the 2 d yr., which forms the principal for 4 mo. Since. 6% for 1 yr . is 2% for 4 mo ., or $\frac{1}{3}$ of a year, the principal, $\$ 730.34$, multiplied by 1.02 gives $\$ 744.95$, the amt. at the end of 2 yr .4 mo . The amount,

OPERation.	
$\$ 650$	Prin. for 1st yr.
$\frac{1.06}{\$ 689}$	Prin. for 2 d yr.
$\frac{1.06}{}$	
$\$ 730.34$	Prin. for 4 mo.
$\frac{1.02}{\$ 744.95}$	Amt. for 2 yr. 4 mo.
$\frac{650}{\$ 94.95}$	Comp. Int.

Rule.-1. Find the amount of the principal for the first period of time, at the end of which interest is due, and make it the principal for the second period.
2. Find the amount of this principal for the second period of time, making it the principal for the third period, and so continue for each successive period and fraction of a period, to the end of the given time.
3. Subtract the given principal from the last amount; the remainder will be the compound interest.

When the time contains months and days, find the amount of the principal to the end of the last period; then compute the simple interest on that amount for the remaining time, and add it to the last amount for the total amount.

Find the amount and the compound interest of
2. $\$ 475$, for 2 yr., at 5%; $\$ 640$, for 2 yr. 6 mo. 15 da., at 6%.
3. $\$ 1000$, for 3 yr ., at 7%; $\$ 8 \% 5.50$, for 4 yr .8 mo ., at 5%.
4. $\$ 2500$, for 4 yr. 4 mo ., at 4%; $\$ 3600$, for 1 yr .9 mo ., at $5 \frac{1}{2} \%$.
5. $\$ 750$, for 5 yr .3 mo., at 6%; $\$ 4500$, for 3 yr .4 mo., at 8%.
6. Find the amt. of a note for $\$ 600$, due in 2 yr . 6 mo ., bearing compound interest, at 6%, payable semi-annually.

If the interest is compounded semi-annually, the rate \% is one half of the yearly rate ; if quarterly, one fourth the yearly rate; etc.

By reducing the time to periods, and the rate proportionally, 2 yr . 6 mo . in semi-annual payments at 6% is the same as 5 yr . at 3%.

If the time were 1 yr .6 mo .24 da . in quarterly payments at 8%, then it would be the same as 6 yr . at 2%, and 24 da. simple interest, at 8% must be computed on the last amount and added for the total amount.
7. To how much more would $\$ 1460$ amount at compound interest than at simple interest in 4 yr .4 mo., at 6% ?
8. What is the compound interest of $\$ 540$, for 1 yr .6 mo . 24 da., at 8%, interest payable quarterly?
9. At \%\% interest compounded semi-annually, what will $\$ 360$ amount to in 1 yr. 9 mo. 15 da.?
432. Table. Showing the amount of $\$ 1$, at different rates, compound interest, from 1 to 15 years.

Yr		3 p						
1	1.0250	1.0300	1.0	1.0400	1.0500	1.0600	1.0700	
2	1.0506	1.0609	1.0712	1.0816	1.1025	1.1236	1.1449	1.1
3	1.0769	1.0927	1.1087	1.1249	1.1576	1.1910	1.2250	1.2597
4	1.1038	1.1255	1.1475	1.1699	1.2155	1.2625	1.3108	1.
5	1.1314	1.1593	1.1877	1.2167	1.2763	1.3382	1.4026	1.4
6	1.1597	1.1941	1.2293	1.		1.4185		
7	1.1887	1.2299	1.2723	1.3159	1.4071	1.5036	1.6058	1.7138
8	1.2184	1.2668	1.3168	1.3686	1.4775	1.5938	1.7182	1.8509
9	1.2489	1.3048	1.3629	1.4233	1.5513	1.6895	1.8385	1.9
10	1.2801	1.3439	1.4106	1.4802	1.6289	1.7908	1.9672	2.15
11	1.3121	1.3842	1.4600	1.5395	1.7103	7.8983	2.1049	2.3316
12	1.3449	1.4258	1.5111	2.6010	1.7959	2.0122	2.2522	2.5182
13	1.3785	1.4685	1.5640	1.6651	1.8856	2.1329	2.4098	2.7196
14	1.4130	1.5126	1.6187	1.7317	1.9799	2.2609	2.5785	2.9372
15	1.4483	1.5580	1.6753	1.8009	2.0789	2.3966	2.7590	3.17

1. Find, by the table, the amount of $\$ 784$ for 5 yr .6 mo ., at 8%, interest payable semi-annually.

Explanation. -5 yr. $6 \mathrm{mo} .=11$ halves of a year; 8% per annum $=4 \%$ semi-annually. The am't of $\$ 1$ for 11 yr . at 4% is 1.5395 ; $\$ 784 \times 1.5395=\$ 1206.97$, the $\mathrm{am}^{\prime} t ; \$ 1206.97-\$ 784=\$ 422.97$, the compound interest.

In like manner find the am't and the comp. int. of
2. $\$ 396$, for 5 yr ., at 6%.
3. $\$ 1475$, for 7 yr ., at 5%.
4. $\$ 860.50$, for $4 \frac{1}{2}$ yr., at 7%. 5. $\$ 1500$, for $2 \frac{1}{2}$ yr., at 8%.
6. $\$ 1125$, for 7 yr ., at 7%.
7. \$575, for 6 yr. 6 mo., at 8%.
8. $\$ 2500$, for 5 yr. 6 mo., at 6%.
9. $\$ 1250$, for $3 \frac{1}{2} \mathrm{yr}$., at 8%.
10. What is due on a note of $\$ 500$, bearing semi-annual compound interest, at $7 \%, 3 \mathrm{yr} .9 \mathrm{mo}$. from date?
433. Annual Interest is simple interest on the principal and on each year's interest remaining unpaid.

Annual interest is not considered legal in some States. When allowed, notes or other contracts must contain the words, "with annual interest," or "interest payable annually," as simple interest is not due, and cannot be collected until the principal is due.

Written Exercises.

434. 435. Find the amount of $\$ 860$, at 6%, for 3 yr. 6 mo ., interest payable annually, but remaining unpaid.

Explanation.-At 6% the simple int. of $\$ 860$, due at the end of each year, is $\$ 51.60$, and for 3 yr .6 mo . it is $\$ 180.60$. $\$ 51.60$, the int. due at the end of the first year, draws interest for 2 yr .6 mo ; that due at the end of the 2 d year, for 1 yr 6 mo . and that due at the end of the 3 d year, for 6 mo . Hence, there is simple interest due on $\$ 51.60$ for $2 \mathrm{yr} .6 \mathrm{mo} .+1 \mathrm{yr} .6 \mathrm{mo} .+6 \mathrm{mo} .=$ 4 yr .6 mo . ; and the int. of $\$ 51.60$ for 4 yr .6 mo ., at 6%; is $\$ 13.92$, and the total int. is $\$ 194.52$; and $\$ 860+\$ 194.52=\$ 1054.52$, the am ${ }^{2}$ t

What is the annual interest and the amount of
2. $\$ 1000$, for 4 yr. 6 mo., at 8% ?
3. $\$ 765$, for 5 yr ., at 7% ?
4. $\$ 2640$, for 3 yr. 9 mo., at 6% ?
5. $\$ 186.80$, for 6 yr .3 mo., at 5% ?
6. What is the difference between the annual and the compound interest of $\$ 800$, for 5 yr ., at 6% ?
7. How much interest is due at the end of 3 yr .8 moc , on a note for $\$ 685$, at 6%, interest payable annually, but remaining unpaid?
8. What is the amount due upon a note for $\$ 900$ which has run 6 yr .4 mo , at $\% \%$ interest, payable annually?

2DEFINITIONSE

435. A Promissory Note is a written promise by one party to pay a sum of money to another party, at a specified time, or on demand, for value received.
436. The Face of a note is the sum promised to be paid.

43\%. The Maker or Drawer of a note is the party who promises to pay, and who signs the note.
438. The Payee of a note is the party to whom, or to whose order, the money is to be paid.
439. The Holder of a note is the party who has legal possession of it.

A note to be valid must contain the words "value received."
If a note contains the words " with interest," or " with use," it draws interest from date. If these words are omitted, the note will not draw interest until after it is due. If no rate is mentioned, the legal rate. prevails.
440. A Negotiable Note is a note made payable to bearer, or to the order of the payee.

Without the words " or order," or the words " or bearer," inserted. the note is not negotiable, and is payable to the person only whose name is mentioned in it.
441. A Bankable Note is a note made payable at a bank. The following is a simple form :

$\$ 250 \frac{75}{100}$.

Chicago, April 1, 1881.
Sixty days after date, I promise to pay John Hayes, or order, two hundred fifty $\frac{75}{100}$ dollars, at the Citizens' Bank, value received.

Amos Brown.
442. Partial Payments are part payments of notes, bonds, or other obligations.
443. Indorsements are statements of payments, written on the back of the note or obligation, stating the time and amount of the same.

The Rule prescribed by the Supreme Court of the United States, for partial payments, and adopted by most of the States, is based upon the following
444. Principles. I. That payments must be applied, first, to discharge accrued interest, and then the remainder, if any, toward the discharge of the principal.
II. Only unpaid principal can draw interest.

United States Rule.

1. Compute the interest on the given principal from the date of the note to the time of the first payment. If this payment equals or exceeds the interest due, subtract the payment from the amount, and treat the remainder as a. new principal.
2. If any payment is less than the accrued interest, compute the interest on the same principal, to a date when the sum of the payments equals or exceeds the interest then due, and subtract the sum of the payments from the amount, and regard the remainder as a new principal.
3. Proceed in the same manner with the remaining paymonts, until the date of settlement.

The new method here presented of working examples in partial payments, usually so tedious and perplexing, is commended to the careful consideration of teachers, as not only brief and simple, but eminently practical for business calculation, being greatly superior in both these respects to the methods generally taught in arithmetical text-books.

WRITTEN EXERCISES.

445.

$\$ 2000.00$.

On demand, I promise to pay A. S. Barnes \& Co., or order, two thousand dollars, with interest at six per cent., value received.

James Foster.
The following payments were indorsed on this note:
Feb. 19, 1880, \$400; June 28, 1881, \$1000; Nov. 13, 1881, \$520. What was due Dec. 25, 1882?

First arrange a "Time Table," as follows:
In the first column place the date of the note, the dates of the several payments in their order, and the date of settlement. In the second column place the difference between each date and the succeeding one. This operation, and reducing results to lower terms, can usually be done mentally. In the third column place the payments in their order; and in the last column place the face of the note.

The reduction of the difference of time between the dates can be made as required for use, and need not appear in the table. The remainder after each payment is placed in the last column as a new principal. The design of the above is to represent the completed work.

The advantage of this simple and compact arrangement is that it shows at a glance the date of each payment and the time for which interest is to be computed; and, as the work progresses, it shows the amount due after each payment, used as a new principal, and the amount due at the time of settlement.

The time may be reduced to months and tenths of a month (41\%, Ex. 11), or to days, as shall best be adapted to the method used in computing the interest.

To illustrate the foregoing suggestions, the work is given below in full, following the United States Rule, and using the method by cancellation (423, Rule), leaving the cancelling to the ingenuity of the pupil. The amount due after each payment should be placed in the last column, and regarded as a new principal, and the previous work may be erased, so that when the work is complete, only the table will be left, the last amount in the last column being the required answer.

With the table before him, let the pupil compute the interest upon the principal from the date of the note to the time of the first payment, or for 1 yr .1 mo .15 da., equal to 13.5 months, etc.

First step.		
12	\$2000	Prin.
	. 06	Rate.
	13.5	Time.
	\$135	Int.
	\$2000	
	\$2135	Amt.
	\$400	Payment.
	\$1\%35	1st Rem.

second step.		
12	\$1735	1st new Prin.
	. 06	Rate.
	16.3	Time.
	\$141.40	Int.
	\$1735	
	\$18\%6.40	Amt.
	\$1000	Payment.
	\$876.40	2d Rem.

THIRD STEP.

$360 |$| $\$ 876.40$ | 2 d new Prin. |
| :--- | :--- |
| .06 | Rate. |
| $\frac{135}{\$ 19.72}$ | Time. |
| Int. | |
| $\frac{\$ 876.40}{}$ | |
| $\$ 896.12$ | Amt. |
| $\$ 520$ | Payment. |
| $\$ 376.12$ | 3d Rem. |

FOURTH STEP.

(2.)
\$6 $\overline{75.00}$.
San Francisco, Aug. 1, $18 \% 8$.
One day after date, I promise to pay T. H. Rose, or order, six hundred seventy-five dollars, with interest at 8 per cent, for value received.

Charles H. Allen.
The following payments were indorsed on this note: Oct. 25, 1879, \$40; Dec. 25, 1880, \$122.60; June 14, 1881, \$216.80.

What was due Jan. 2, 1882? -

Yr. Mo. Da.	Difference between Dates.	Patùmets.	Prin.
$1878 \quad 8 \quad 1$	yr. mo. da. Days. Months.		\$675
18791025	$1 \quad 2 \quad 24=444=14.8\}$	\$40	
18801225	$120=420=14\}$	\$122.60	\$642
1881614	$5 \quad 19=169=5.6 \frac{1}{3}$	\$216.80	\$449.31
188212	$618=198=6.6$		\$469.08

In this example, the first payment is less than the interest due, and we compute the interest to the time of the second paymert, and subtract the sum of the two payments.
3. A note for $\$ 850$, dated St. Louis, Feb. 1, 1878, had payments indorsed upon it as follows :

$$
\begin{array}{ll}
\text { July } 25,1878, \$ 200 . & \text { April } 1,1880, \$ 50 . \\
\text { June } 13,18 \% 9, \$ 100 . & \text { Dec. } 10,1880, \$ 1 \% 5 .
\end{array}
$$

What was due Aug. 12, 1881, interest 6% ?
4. Take the same example, and find what was due May 6, 1881, interest 8%.
$\$ 784 \frac{60}{100}$.
Boston, May 9, 1880.
Three months after date, we promise to pay Јонл Аввотт, or order, seven hundred eighty-four $\frac{60}{100}$ dollars, with 7 per cent. interest, value received. Nichols \& Brown.

Indorsed as follows: Oct. 1, 1880, \$100; June 15, 1881, $\$ 125$; Nov. 2, 1881, \$300. Find the amount due April 4, 1882.
6. A mortgage for $\$ 5400$ was dated New Orleans, Jan. 1, 18\%9, and indorsed as follows: May 22, 1880, \$1200; Feb. 9, 1881, $\$ 150$; Oct. 28, 1881, $\$ 1500$. Whạt was due March 1, 1882, interest 5% ?
7. What would be due upon the same, if settled Aug. 8, 1882, interest at 8% ?
8. I held a bond against Ira Fox, dated May 1, 1879, for $\$ 4000$, on interest, at 6%. The following payments were indorsed on this bond:

May 21, 1880, \$800; June 10, 1881, \$1200; Aug. 10, 188\%, \$1500. What was due May 1, 1883 ?
446. Merchants in computing interest on notes and accounts, running a year or less, or that require to be settled annually, semi-annually, or quarterly, on which partial payments have been made, often use the following method, called the

Mercantile Rule.

1. Find the amount of the note or debt from the time interest commenced to the time of settlement.
2. Find the amount of each payment from the time it was made to the time of settlement.
3. From the amount of the note or debt subtract the sum of the amounts of the payments; the remainder will be the amount due.

In the application of this rule, the time should be reduced to days, and the interest computed according to $\mathbf{4 2 4}$.

1. Find the amount due on a note for $\$ 940$, at 6%, dated Jan. 1, 1881, on which were the following indorsements: March 10, \$250; May 25, \$175; Sept. 12, \$350. What was due Nov. 20, 1881?

OPERATION.

2. On a debt of $\$ 1250$, due June 1, 1881, payments were made as follows:

July $10, \$ 350 ;$	Oct. 26, $\$ 228 ;$
Sept. $9, \$ 155.50 ;$	Dec. 16, $\$ 410 . \% 5$.

What was due April 15, 1882, at $\% \%$?
3. A note was given for $\$ 3462$, Jan. 4, 1880, at 7%. Indorsements: April 3, $\$ 500$; Aug. 12, $\$ 650$; Oct. 5, $\$ 1000$. What was due 1 year from date?
4. What would have been due upon the same note Nov. 10, interest at 8% ?

12 iscounis

44\%. Discount is a deduction from the price of goods, or from the amount of a debt, a note, or other obligation, for payment before it is due.
448. The Present Worth of any debt or note is the amount of it less the discount.
449. The True Present Worth of a debt payable at a future time without interest is the sum which at legal interest would amount to the debt at the time it becomes due.
450. The True Discount is the difference between the amount of the debt and the true present worth.
451. The corresponding terms of True Discount and Percentage are as follows:

1. The True Present Worth is the Base.
2. The Rate Per Cent. is the Rate.
3. The True Discount is the Percentage.
4. The Whole Debt is the Amount.

Written Exercises.

452. To find the Present Worth and True Discount of a debt, payable at a future time.
453. Find the present worth and the true discount of $\$ 353.60$, payable in 1 yr. 6 mo ., the rate being 7%.

Explanation.-Since $\$ 1.105$ is the amount of $\$ 1$, at interest for 1 yr .6 mo at $7 \%, \$ 353.60$ is the amount of as many dollars for the same time and rate, as $\$ 1.105$ is contained times in $\$ 353.60$, or $\$ 320$, the present worth; and $\$ 353.60-\$ 320=\$ 33.60$, the discount.
Formulas : $\left\{\begin{array}{l}\text { 1. } D e b t \div \text { Amount of } \$ 1=\text { Present Worth. } \\ \text { 2. Debt }- \text { Present Worth }=\text { Discount } .\end{array}\right.$

Find the Present Worth and True Discount
2. Of $\$ 475.50$, at 7%, due in 2 yr .9 mo ; at 6%, due in 9 mo.
3. Of $\$ 535.60$, at 6%, due in 6 mo ; at 8%, due in 10 mo .
4. Of $\$ 860$, at $6 \frac{1}{2} \%$, due in 90 da.; at 10%, due in 6 mo . 21 da.
5. Of $\$ 15 \% 5$, at 5%, due in 1 yr .3 mo .15 da ; at 7%; at 8%.
6. What is the difference between the interest and true discount of $\$ 1650$, at 6%, due in 8 mo .?
\%. What sum, due 73 da. hence, at 7%, should be discounted, so that the present payment may be $\$ 900$?
8. A merchant bought a bill of goods on 6 mo . credit amounting to $\$ 1450$. What will he gain by present payment of the bill, if allowed 5% off, money being worth $\frac{3}{4} \%$ a month?
9. Which is the better, to buy flour at $\$ 8$ a barrel, on 6 mo. credit, or $\$ \% .50$ cash, money being worth 8% ?
10. What is the present worth of a debt of $\$ 48 \% .50$ due in 8 mo. 24 da., at 10% ?
11. Which is worth the most, $\$ 640$ in 12 mo., $\$ 620$ in 6 mo., or $\$ 600$ cash, money being worth 8% ?
12. Bought a house for $\$ 3786$ ready money, and sold it for $\$ 5250$, payable in 1 yr .6 mo . How much would be gained in ready money, discounting at the rate of 8% ? How much, discounting at the rate of 6% ?
13. A merchant bought goods to the amount of $\$ 6300$, $\frac{1}{3}$ payable in 3 mo., $\frac{1}{3}$ in 6 mo., and $\frac{1}{3}$ in 9 mo . Money being worth 8%, what sum would have paid the bill at the time of purchase?
14. Jones holds two notes against Smith, one for $\$ 356$, due May 6,1882 , and the other for $\$ 175.50$, due Sept. 25, 1882; how much money will cancel both notes Oct.11, 1881, discounting at the rate of 6% ?

453. Bank Discount is a deduction usually made by banks for paying a note before it is due. This deduction is the interest on the face of the note for the time it has to run, including three additional days, called Days of Grace.
454. Days of Grace are three days allowed to be added to the time specified in the note, before it is legally due.
455. The Proceeds or Avails of a note is its present worth when discounted; that is, its face less the discount.
456. The Term of Discount is the time the note has to run after being discounted.

45\%. The Maturity of a note is the expiration of the time it has to run, including the days of grace.

When a note falls due on Sunday or a legal holiday, it must be paid the day previous.
458. A Protest is a statement, made by a notary public, giving legal notice to the maker and indorsers of a note, of its non-payment.

If a note is not protested on the third day of grace, the indorsers are released from all obligation to pay it.
459. The corresponding terms of Bank Discount and Percentage are as follows:

1. The Face of the Note is the Base.
2. The Rate Per Cent. is the Rate.
3. The Bank Discount is the Percentage.

WRITTEN EXERCISES.

460. To find the Bank Discount and Proceeds of a

 mote.1. Find the bank discount and the proceeds of a note for \$684, due in 90 days, at 7% ?

Explanation.-The term of discount is 93 da., and the int. of $\$ 684$, for 93 da., at 7%, reckoning 365 da. to the year, is $\$ 12.20$, the bank discount. Reckoning 360 da . to the year,* the bank discount is $\$ 12.37$. The face of the note, minus the bank discount, $\$ 12.20$, or $\$ 12.37$, gives the proceeds, $\$ 671.80$, or $\$ 671.63$. Hence,
Formulas : $\left\{\begin{array}{r}\text { 1. Face } \times \text { Rate } \% \times \text { Term of Discouni } \\ =\text { Bank Discount. } \quad(41 \%, 1 .)\end{array}\right.$
2. Face - Bank Discount $=$ Proceeds.
(33\%, 3.)
If the note is on interest, find the discount on the amount of the note at maturity.

Find the Bank Discount and the Proceeds, reckoning 360 da. to the year,
2. Of $\$ 540$, for 3 mo .15 da., at 6%.
3. Of $\$ 875$, for 60 da., at 6%. Of $\$ 620$, for 6 mo ., at 8%.
4. Of $\$ 2144.50$, for 3 mo .10 da ., at 6%. At 8%.
5. Of $\$ 312.80$, at 6%, for 30 da. For 2 mo .15 da .
6. Of 2500 , at 7%, for 3 mo . Of $\$ 1150$, at 6%, for 2 mo .
7. What is the difference between the bank and the true discount on a note of $\$ 1250$, at 6%, payable in 60 da.?
8. Find the bank discount and the proceeds of a note for $\$ 1500$, dated Sept. 10, 1880, payable in 6 mo., with interest, at 8%, and discounted Nov. 25, 1880, at the same rate.
9. What are the proceeds of a note for $\$ 750$, due in 90 da., bearing interest at 8%, and discounted at a bank at the same rate?
10. A note for 3 mo., dated Aug. 14, 1881, for $\$ 862.50$, was discounted, at 6%, Sept. 25 . What were the proceeds?

[^4]Find the Date of Maturity, the Term of Discount, and the Proceeds of the following notes, reckoning 365 days to the year:
$\$ 456 \frac{50}{100}$.

11.

Four months after date I promise to pay to the order of Wm. A. Cauthorn, four hundred fifty-six $\frac{50}{100}$ dollars, with interest, value received.

James B. Eads.
Discounted Aug. 9, at 6\%.
12.
$\$ 73500$.
Philadelphia, Oct. 4, 1880.
Sixty days after date I promise to pay to Geo. H. Stuart, or order, Seven hundred thirty-five dollars, at the Commercial Bank, value received, without defalcation. John B. Jones.
Discounted Oct. 25, at 6\%.

13.

$\$ 1000$.

St. Louis, May 14, 1882.
Six months after date we promise to pay J. M. Baker, or order, One thousand dollars, value received.

Ellis, McKnight \& Co.
$\left.\begin{array}{l}\text { Discounted at the Marine Bank, } \\ \text { Sept. 1, at } 1 \% \text { a month. }\end{array}\right\}$
14.
$\$ 296 \frac{75}{\frac{75}{100} .}$
Charleston, S. C., March 8, 1881.
Three months after date I promise to pay to the order of Wm. Thompson, two hundred ninety-six $\frac{75}{100}$ dollars, with 7\% interest, value received.

Amos Kendall.
$\left.\begin{array}{c}\text { Discounted at the Planters' Bank, } \\ \text { April 15, at same rate. }\end{array}\right\}$

15.

$\$ 1260$.

New York, Jan. 1, 1880.
Thirty days after date we promise to pay to Henry Curtis, or order, twelve hundred sixty dollars, at the Chemical Bank, value received. A. D. Randolph \& Co.
Discounted Jan. 1, at 6\%.
16. I hold a note for $\$ 11 \% 6.40$, dated Oct. 18,1880 , and due in 3 mo., bearing interest at 8%. If discounted at a bank Nov. 10, 1880, at $1 \frac{1}{2} \%$ a month, what will be the proceeds?

1\%. A note for $\$ 5000$, dated June 11, 1881, and payable in 6 mo., with interest at 10%, was discounted Aug. 1, at 2% a month. What were the discount and the proceeds?

461. To find the Face of a note, the proceeds, time, and rate being given.

1. For what sum must a note be drawn, payable in 60 da., at 8%, that when discounted the proceeds may be $\$ 824$?

Explanation.-Since the bank discount of $\$ 1$ for 63 da., at 8%, is $\$.014$, the proceeds of $\$ 1$ is $\$ 1-\$.014$, or $\$.986$; hence, $\$ 824$ is the proceeds of as many dollars as $\$.986$ is contained times in $\$ 824$, or $\$ 835.70$, the face of the note. Hence,

$$
\text { Formula : } \frac{\text { Proceeds of Note }}{\text { Proceeds of } \$ 1}=\text { Face of Note. }
$$

Required the Face of a note, that the proceeds may be
2. $\$ 810.60$, for 60 da ., at 7%; $\$ 601.09$, for 6 mo., at 6%.
3. $\$ 1478.82$, for 30 da., at 6%; $\$ 2072.60$, for 40 da., at 8%.
4. $\$ 496$, for 6 mo ., at 2% a mo.; $\$ 5 \% 5$, for 60 da., at $1 \frac{1}{2} \%$ a month.
5. Bought goods for $\$ 1621.20$ cash, but gave a note, payable in 60 da., at 7\% bank discount. What was its face?
6. The avails of a 4 mo . note, discounted at 8%, were $\$ 8 \% 5.40$. What was the face of the note?
7. I wish to raise $\$ 1275.25$ at a bank, by a note for 15 da., to be discounted at 8%. For what sum must I draw the note?
8. For what sum must a note be drawn, dated Aug. 10, 1881, payable in 90 da., that when discounted at 7%, Sept. 15, the proceeds may be $\$ 640$?
9. For what sum must a produce dealer make his note at 4 mo ., that when discounted by a bank at 6%, the proceeds will pay for 1500 bu . of wheat, at $\$ 1.62 \frac{1}{2}$ a bushel?
10. For what sum must a note be drawn, dated Aug. 20, 1881, payable in 5 mo., that when discounted at a bank Oct. 3, at 6%, the proceeds will pay for 328 tons of coal at $\$ 4.50$ a ton?

2DEFMNTTONSC

462. Exchange is a method of paying debts to persons at a distance by means of written orders, called Bills of Exchange or Drafts.

In this way the inconvenience and risk of remitting money to persons at a distance are obviated.

Exchange is of two kinds-Domestic or Inland, and Forengn.
463. Domestic or Inland Exchange is that which is made between different places in the same country.
464. Foreign Exchange is that which is made between different countries.
465. A Bill of Exchange is a written order for the payment of money to a certain person at a specified time. In domestic exchange it is called a Draft.

These bills are usually drawn in duplicate or triplicate, each copy being valid until the amount is paid. These copies may be sent by different conveyances, so as to avoid miscarriage; or one may be retained by the buyer of the bill for the sake of security. Together these copies constitute a Set of Exchange.
466. A Sight Bill is one payable at sight, or on presentation.

46\%. A Time Bill is one that is payable at a specified time, either after date, or after sight.
468. The Drawer of a Bill is the party who draws it; the Drawee is the party upon whom it is drawn; the Payee is the party in whose favor it is drawn, or to whom the money is directed to be paid.

The payee may by indorsement transfer the payment to any other person. A Special Indorsement is an order to pay the bill to some particular person called the Indorsee.
469. The Acceptance of a bill is the consent of the drawee to pay it at maturity.

This he gives by writing across the face of the bill "accepted," with the date of his signature. The drawee then becomes the acceptor, and the bill an acceptance. Days of grace are usually allowed on bills of exchange, as on promissory notes.

4\%. The Par of Exchange is the established value of the monetary unit of one country as compared with that of another.

The Intrinsic Par of Exchange is the standard value of the monetary unit, depending upon its comparative weight and purity; the Commercial Par of Exchange is the market value at any particular time, dependent on the Course of Exchange.

4\%1. The Rate or Course of Exchange is the current price of Bills of Exchange upon different countries.

The rate of exchange depends on the course of trade and the commercial credit of the places between which the exchange is effected. Exchange is at par, above par, or below par, according to the fluctuations of trade between the two countries or places. If, for example, as between London and New York, the balance of indebtedness is in favor of the former place, the exchange at the latter will be at a premium, or above par ; if the reverse, at a discount, or below par.

DOMESTIC OR INLAND EXCHANGE.

4'29. Form of an Inland Bill or Draft.
\qquad New York, June 10, 1881.
At sight, pay to the order of Levi Woodman Six hundred dollars, value received, and charge to the account of John H. Bowen.
To Brown Bros.,
Chicago, Ill.
In time drafts, instead of the words "at sight," "- days after sight," or " - days after date" are used. After sight is equivalent to after acceptance.

For inland bills or drafts the rate on exchange is expressed by the rate of premium or discount at the time, depending on the course of trade.

WRitten Exercises.

4183. To find the Cost of a sight or time draft.
4184. What is the cost of a sight draft on Chicago for $\$ 1680$, at $1 \frac{1}{8} \%$ premium?

Explanation.-Since the rate of premium is $1 \frac{1}{8} \%$, the course of exchange is $1.01 \frac{1}{8}$, and the cost of exchange for $\$ 1$ is $\$ 1.01 \frac{1}{8}$; hence, the cost of $\$ 1680$ is 1680 times $\$ 1.01 \frac{1}{8}$, or $\$ 1698.90$.
2. What is the cost of a draft on Portland for $\$ 1360$, payable in 60 da. after sight, at 6% interest, exchange at $\frac{7}{8} \%$ premium?

Explanation.-Since the premium is $\frac{7}{8} \%$, the rate of exchange is $1.00 \frac{7}{8}$, and the bank discount for 63 da . is .0105 ; hence, the cost of exchange for $\$ 1$ is $\$ 1.00875$ minus $\$.0105$, or $\$.99825$; and the cost of $\$ 1360$ will be 1360 times $\$.99825$, or $\$ 1357.62$. Hence,

Formula : Face \times Cost of $\$ 1$ Exchange $=$ Cost of Draft .
Find the cost of sight drafts
3. For $\$ 650$, premium 2%.
4. For $\$ 1500$, premium $\frac{3}{4} \%$.
5. For $\$ 275.50$, premium $1 \frac{1}{2} \%$. 8. For $\$ 395.75$, discount $\frac{4}{5} \%$.

Find the cost of drafts
9. For $\$ 380$, premium $\frac{1}{2} \%$, time 60 da., interest 4%.
10. For $\$ 2500$, premium $\frac{3}{4} \%$, time $\%$ da., interest 5%.
11. For $\$ 1462$, discount $1 \frac{1}{4} \%$, time 30 da., interest 6%.
12. Find the cost of a sight draft on St. Louis for $\$ 2160$, at $1 \frac{3}{8} \%$ premium.
13. Find the cost of a draft in New York, on San Francisco, at 90 da., for $\$ 4684$, the course of exchange being $1.01 \frac{5}{8}$.
14. What will be the cost of a draft in Chicago, on New Orleans, at 30 da. sight, for $\$ 1920$, at $\frac{3}{8} \%$ discount, interest $\%$ \% ?

4'\%4. To find the Face of a sight or time draft.

1. How large a draft can be bought for $\$ 3000$, exchange at $1 \frac{1}{2} \%$ discount?

Explanation.-Since the rate of discount is $1 \frac{1}{2} \%$, the cost of exchange for $\$ 1$ is $\$.985$; hence, the face of a draft that will cost $\$ 3000$, will be as many dollars as $\$.985$ is contained times in $\$ 3000$. or $\$ 3045.69$.
2. Find the face of a draft on St. Paul at 90 da., purchased for $\$ 1250$, exchange being $101 \frac{1}{2}$, interest 6%.

Explanation.-Since the course of exchange is $101 \frac{1}{2}$, the cost of exchange for $\$ 1$ is $\$ 1.015$, if payable at sight ; but since it is not to be paid until 93 da., bank discount is allowed for that time at 6%, that is, $\$.0155$ for every dollar ; hence, the cost of exchange for $\$ 1$ is $\$ 1.015$ minus $\$.0155$, or $\$.9995$; and $\$ 1250$ will purchase a draft for as many dollars as $\$.9995$ is contained times in $\$ 1250$, or $\$ 1250.62 \frac{1}{2}$.

Formula : $\frac{\text { Cost of }}{\text { Cost of } \$ 1} \frac{d r a f t}{\text { exchange }}=$ Face.
Find the Face of a draft which costs
3. $\$ 950$, premium $1 \frac{3}{4} \%$. \quad 6. $\$ 485$, discount $1 \frac{1}{8} \%$.
4. $\$ 756.40$, premium $2 \frac{1}{8} \%$.
5. $\$ 375.50$, premium $\frac{3}{3} \%$. \quad 8. $\$ 2540$, discount $1 \frac{3}{5} \%$.
9. What is the face of a 6 months' draft costing $\$ 600$, premium $1 \frac{1}{2} \%$, interest 5% ?
10. How large a draft can be bought for $\$ 3195.20$, payable in 60 da., interest 8%, exchange $101 \frac{1}{4}$?
11. An agent in Boston sold a consignment of goods for $\$ 4130$, commission on the sale $2 \frac{1}{2} \%$. He remitted the proceeds by draft on New York, exchange $\frac{1}{2} \%$ premium. What amount did he remit?

FOREIGN EXCHANGE.

4\%5. Form of a Bill or Set of Exchange.

$\overline{£ 600}$.

New York, Feb. 1, 1881.
At sight of this First of Exchange (Second and Third of the same tenor and date unpaid), pay to the order of Wм. Baүstock, six hundred pounds sterling, for value received, and charge the same to the account of

To Cohen \& Co.,
Brown Bros. \& Co. London, Eng.

The foregoing is the form of the first bill ; in the second and third bills, the only change required is the substitution of the word second or third for first.

Bills of Exchange are usually made payable either 3 days after sight, or 60 days after sight. Hence, sixty-day bills are quoted at a lower rate, on account of the discount.

4\%6. Exchange with Europe is effected mainly through the great financial centres, London, Paris, Antwerp, Berlin, Hamburg, Frankfort, and Amsterdam.

In exchange on Paris, Antwerp, and Switzerland, the unit is the franc; on Amsterdam, the unit is the guilder ; and on Hamburg, Franikfort, Bremen, and Berlin, the unit is four marks.

4\%\%. Sterling Exchange consists of bills on any part of Great Britain.

4\%8. Quotations of Exchange give the market value of the foreign monetary unit in U. S. money, or the U. S. unit in foreign money ; thus,

Sterling Exchange, £1			$=\$ 4.86$		(market value).
Paris	"	\$1	$=5.21$	rancs	*
Antwerp	"	\$1	$=5.23$	"	،
Berlin	،	4 m	$=\$.941$		6
Bremen	"		$=\$.95$		${ }_{6}$
Amsterdam	"		$\mathrm{r}=\$.40 \frac{1}{2}$		

479. Money of Account is the money of any particular country, consisting of the various denominations in which accounts are kept.

The Act of Congress of March 3, 1873, provides that, " The value of foreign coin, as expressed in the money of account of the United States, shall be that of the pure metal of each coin of standard value ; and the values of the standard coins in circulation, of the various nations of the world, shall be estimated annually by the Director of the Mint, and be proclaimed on the first day of January, by the Secre. tary of the Treasury.
480. The following Table, published by the Secretary of the Treasury, Jan. 1, 1881, shows the values in United States money of the pure gold or silver representing respectively the monetary units and standard coins of foreign countries.

Country.	Monetary Unit.	Standard.	Value in U. S. Money
Austria	Florin	Silver.	.40, 7
Belgium.	Franc	Gold and silver. .	.19, 3
Bolivia.	Boliviano	Silver.	.82, 3
Brazil	Milreis.	Gold	.54, 6
Brit. Pos. in N. A. .	Dollar	Gold.	\$1.00
Chili.	Peso.	Gold and silver. .	.91, 2
Cuba.............	Peso	Gold and silver. .	.93, 2
Denmark	Crown	Gold.	.26, 8
Ecuador	Peso.	Silver.	.82, 3
Egypt.	Piaster.	Gold.	.04, 9
France.	Franc..	Gold and silver. .	.19, 3
Great Britain.	Pound.	Gold	4.86, 61
Greece.	Drachma	Gold and silver. .	.19, 3
German Empire.	Mark.	Gold.	.23, 8
India.	Rupee......	Silver...........	. 39
Italy ..	Lira.	Gold and silver..	.19, 3
Japan.	Yen	Silver...........	.88, 8
Liberia.	Dollar	Gold.	1.00
Mexico..	Dollar.	Silver.89, 4
Netherlands.	Florin	Gold and silver. .	.40, 2
Norway.	Crown.	Gold	.26, 8
Peru.	Sol..	Silver..........	.82, 3
Portugal.	Milreis.	Gold	1.08
Russia.	Rouble.	Silver	.65, 8
Sandwich Islands...	Dollar	Gold.	1.00
Spain.............. .	Peseta.	Gold and silver. .	.19, 3
Sweden.	Crown..	Gold26, 8
Switzerland	Franc.	Gold and silver. .	.19, 3
Tripoli..	Mahbub.	Silver...........	.74, 3
Turkey	Piaster.	Gold............	.04, 4
U. S. of Colombia..	Peso.... ...	Silver...82, 3

WRITten ExERCises.

481. To find the Cost of a Foreign Bill of Exchange.
482. Find the cost of a bill of exchange on London for $£ 42^{\gamma} \gamma 10 \mathrm{~s} .6 \mathrm{~d}$., at 3 da. sight, sterling exchange being $4.87 \frac{1}{2}$.

Explanation.—£427 10s. 6d. is £427.525 ; and since £1 is worth $\$ 4.875$, $£ 427.525$ is worth 427.525 times $\$ 4.875$, or $\$ 2084.18$.
2. What is the cost of a bill on Paris for 675 francs, at 5.18 francs to the dollar?

Explanation.-Since 5.18 francs cost $\$ 1,675$ francs will cost as many dollars as 5.18 francs is contained times in 675 francs, or $\$ 130.30$.

Formulas: $\left\{\begin{array}{l}\text { in U. S. Money } \\ \text { 2. Face } \div \text { Value of } \$ 1 \text { in Foreign } \\ \text { Money }\end{array}\right\}=$ Cost.
3. Find the cost of a bill on Berlin for 2150 marks, at $96 \frac{1}{2}$.

Explanation.-Since 4 marks cost $\$.96 \frac{1}{2}, 1$ mark will cost $\$.24 \frac{1}{8}$; and 2150 marks will cost $\$ 518.69$.

Find the cost of a bill
4. On London, for $£ 520$ 12s. at $4.85 \frac{1}{2}$, brokerage $\frac{1}{2} \%$.
5. On Paris, for 3640 francs, at $5.22 \frac{1}{2}$, brokerage $\frac{1}{4} \%$.
6. On Geneva, Switzerland, for 8750 francs, at $5.18 \frac{1}{4}$.
7. On Amsterdam, for 6500 guilders, at $41 \frac{3}{4}$, brokerage $\frac{1}{8} \%$:
8. On Berlin, for 3200 marks, at $98 \frac{1}{2}$.
9. What is the cost of a bill of exchange on Glasgow for $£ 6234 \mathrm{~s}$. 9 d., the rate being $\$ 4.88 \frac{1}{4}$?
10. Find the cost of a bill on Hamburg for 2800 marks, at $95 \frac{1}{2}$, brokerage $\frac{1}{8} \%$.
11. What will be the cost of a bill on Amsterdam for 3164 guilders, quoted at $41 \frac{1}{8}$, adding brokerage at $\frac{1}{8} \%$?
482. To find the Face of a Bill of Exchange.

1. What is the face of a bill on London that can be bought for $\$ 11652$, exchange selling at $4.85 \frac{1}{2}$?

Explanation.-Since $£ 1$ cost $\$ 4.85 \frac{1}{2}, \$ 11652$ will buy as many pounds as $\$ 4.855$ is contained times in $\$ 11652$, or $£ 2400$.
2. How large a bill on Antwerp can I buy for $\$ 1650$, when exchange is quoted at 5.20 ?

Explanation.-Since $\$ 1$ will buy 5.20 francs, $\$ 1650$ will buy 1650 times 5.20 francs, or 8580 francs.

Formulas: $\left\{\begin{array}{l}\text { Unit in U. S. Money } \\ \text { 2. Cost } \times \text { Value of } \$ 1 \text { in For }- \\ \text { eign Money }\end{array}\right\}=$ Face.
3. What is the face of a bill on Dublin, bought for $\$ 5000$, exchange being 4.87 ?
4. Find the face of a bill on Frankfort, bought for $\$ 2040$, exchange at 96 .

Explanation.--Since 4 marks can be bought for $\$.96,1$ mark can be bought for $\$.24$; and as many marks can be bought for $\$ 2040$ as $\$.24$ is contained times in $\$ 2040$, or 8500 marks.
5. What will be the face of a bill on Sheffield, England, that can be bought for $\$ 6400$, rate of exchange $4.87 \frac{1}{2}$?
6. A clothing merchant in New York gave $\$ 4350$ for a bill on Paris, at 5.18. What was its face?
7. Find the face of a bill on Amsterdam, that cost $\$ 1043.225$, exchange at $41 \frac{7}{8}$.
8. A. T. Stewart \& Co. instructed their agent at Berlin to draw on them for a bill of goods of 45000 marks, exchange at $9 \% \frac{1}{8}$, brokerage $\frac{1}{4} \%$. What did they pay in U. S. money for the goods?
9. A jeweler paid $\$ 1600$ for a bill on Geneva, Switzerland, exchange at $5.20 \frac{3}{4}$, brokerage $\frac{1}{4} \%$. What was its face?

4S3. Equation of Payments is the process of finding the average time or date for paying the whole amount of several debts due at different times. It is sometimes called Average of Accounts.
484. The Equated Time is the date at which the several sums, due at different times, may equitably be paid.
485. The Term of Credit is the time the debt has to run before it becomes due.
486. The Average Term of Credit is the time at the end of which several sums of money due at different times may equitably be paid in one amount.

In finding the equated time of a series of debits and credits, the date which is assumed as a standard from which to reckon the terms of credit, is sometimes called the Focal Date.

48\%. An Account Sales is a statement in writing, made by a commission merchant or agent to his principal, of merchandise consigned and sold, including the price, charges, and net proceeds.

The greater the term of credit, the greater the interest allowed to the debtor on the amount he owes; but, if he pays it before it is due, he loses a certain amount of interest; and if he retains it after it is due, he receives more interest than he is entitled to. By the equation of payments, neither party loses or gains any interest, on the following
488. Princlple. The rate and interest being the same, the greater the principal the less the time, and the less the principal the greater the time.

Written Exercises.

489. To find the Equated Time and the Average of terms of credit, beginning at the same date.
490. I owe $\$ 200$, payable in cash, $\$ 400$ due in 3 mo., $\$ 500$ due in 5 mo., and $\$ 700$ due in 8 mo. In what time should the whole be paid?

Explanation.-On the first item no interest is due; the interest of $\$ 400$ for 3 mo . is the same as the int. of $\$ 1$ for 1200 mo ; and the int. of $\$ 500$ for 5 mo . is the same as the int. of $\$ 1$ for 2500 mo . ; and of $\$ 700$ the same as $\$ 1$ for 5600 mo . Therefore, the whole amount of int. is that of
operation.

OPERATION.
$200 \times 0=0$
$400 \times 3=1200$
$500 \times 5=2500$
$\frac{700 \times 8=}{1800} \underline{5600}$
9300

$5 \frac{1}{6} \mathrm{mo}$. $\$ 1$ for 9300 mo . But the interest is on $\$ 1800$; hence, the time is $\frac{1}{1800}$ of 9300 mo ., or $5 \frac{1}{6} \mathrm{mo}$., which is the average term of credit, or time required.
2. What is the average term of credit of $\$ 500$ due in 1 mo., $\$ 800$ due in 3 mo., and $\$ 900$ due in 6 mo.?
3. Bought a bill of goods Dec. 1, 1880, amounting to $\$ 1200$, of which $\$ 250$ was payable in cash, $\$ 450$ in 3 mo., and the balance in 6 mo . What is the equated time of payment?

The equated time is found by adding the average term of credit to the date at which the credits commence.
4. A person owes $\$ 2400$, of which $\frac{1}{3}$ is due in 4 mo., $\frac{1}{4}$ in 3 mo ., and the remainder in 8 mo . What is the average term of credit?
5. Find the average term of credit and the equated time of payment from January 15, 1880, of $\$ 1500$ of which 20% is due in 30 da., 25% in 60 da., 30% in 90 da., and the remainder in 120 days.
6. A grocer owes $\$ 1800$, to be paid $\frac{1}{3}$ in 5 mo., $\frac{1}{6}$ in 10 mo., $\frac{1}{8}$ in 18 mo ., and the remainder in 20 mo . What is the average term of credit?
7. Bought a bill of goods amounting to $\$ 1200$, on 6 mo . credit. Paid cash on account $\$ 100$; at the end of 3 mo . paid $\$ 300$ more ; and 2 mo. afterward paid $\$ 400$, giving a note for the balance. For what time was the note drawn?

Explanation. - The int. of $\$ 100$ paid in cash, or 6 mo . before it was due, is the same as the int. of $\$ 1$ for 600 mo .; that of $\$ 300$ for 3 mo . is the same as $\$ 1$ for 900 mo . ; and $\$ 400$ for 1 mo . as $\$ 1$ for 400 mo . Hence, the debtor is entitled to a credit of $\$ 1$ for 1900 mo ; or of $\$ 400$, the unpaid balance, for $\frac{1}{400}$ of 1900 mo ., which is $4 \frac{3}{4} \mathrm{mo}$. Therefore, the note was drawn for 1 mo . plus
OPERATION
$100 \times 6=600$
$300 \times 3=900$
$\frac{400 \times 1=}{800} \underline{400}$
$1900 \div 400=4 \frac{3}{4}$
$(6 \mathrm{mo} .-5 \mathrm{mo})+.4 \frac{3}{4} \mathrm{mo}$
$=5 \frac{3}{4} \mathrm{mo}$. $4_{4}^{\frac{3}{4}} \mathrm{mo}$., or $5 \frac{3}{4} \mathrm{mo}$. from the time of the last payment
8. On a bill of goods bought March 1, amounting to $\$ 1500$, on 8 mo . credit, the following payments were made : May 1, $\$ 350$; Aug. 1, $\$ 500$; Sept. 1 , $\$ 150$. What is the equated time for the payment of the balance?
9. A person owes $\$ 350$, due in 3 mo., and $\$ 750$, due in 6 mo ; but at the end of 2 mo . he pays $\$ 200$, and 3 mo . afterward, $\$ 500$. When is the remainder due?
10. Asa May has given three notes; one for $\$ 300$, due May 1; one for $\$ 350$, due June 15 ; and one for $\$ 550$, due Aug. 1. Desiring to exchange them for two notes of $\$ 600$ each, he makes one payable June 15 ; when should the other fall due?
11. Bought goods to the amount of $\$ 10000$, of which $\$ 2000$ was to be paid in $1 \mathrm{mo} . ; \$ 2000$ in $2 \mathrm{mo} . ; \$ 4000$ in 3 mo ., and the balance in 6 mo . If a note is given for the whole amount, how long should it run?
490. To find the Equated Time and the Average of terms of credit beginning at different dates.

1. Bought goods as follows : May 1, 1880, $\$ 300$ on 3 mo . credit; June 10, $\$ 200$ on 4 mo ; Aug. 1 , $\$ 500$ on 6 mo .; and Sept. $15, \$ 600$ on 4 mo . What is the average term of credit, and the equated time of payment?

operation.

Aug. 1 (May $1+3$ mo.) $\$ 300$, cash.
Oct. 10 (June $10+4$ mo.) $200 \times 70=14000$
Feb. 1 (Aug. $1+6$ mo.) $500 \times 184=92000$
Jan. 15 (Sept. $15+4$ mo.) $\frac{600 \times 167}{1600}=\frac{100200}{206200}$
129 da., the average term of credit from Aug. 1; and the equated time of payment, Dec. 8.

Explanation.-The term of credit of each item, reckoned fron, Aug. 1, the earliest date at which any of the sums become due, is 70 da., 184 da., and 167 da., respectively. The average term from that date, found as in the preceding case (489), is 129 da. ; and the equated time is, therefore, 129 da. from Aug. 1, or Dec. 8.

Proof.-Take the latest date, Jan. 15; calculate the average term from that; and subtract the number of days thus found from the date assumed.

If the earliest date is not the first day of the month, assume that as the standard date, for the sake of convenience.
2. Bought mdse. as follows: Aug. 15, 1880, on 3 mo., $\$ 600$; Sept. 10, 1880, on 4 mo., $\$ 750$; Nov. 5, 1880, on $6 \mathrm{mo} . \$ 900$. Find the equated time of payment.
3. Find the equated time for the payment of three notes, as follows: \$350, dated July 12, 1881, for 90 da.; \$720, lated Sept. 10, 1881, for 60 da. ; and $\$ 1200$, dated Nov. 5, 1881, for 120 da.
4. I owe $\$ 2150$, due Nov. 16 ; I pay $\$ 500$, Oct. 4 ; when is the remainder due?
5. Bought of A. T. Stewart \& Co., the following bills of goods on 5 mo. credit: Feb. 10, 1880, $\$ 900$; March 15, 1880, \$2000; May 10, 1880, \$750; June 12, 1880, \$2000. Find the present worth of a note drawn July 1 in payment of the whole, discounted at 6%.
6. Four notes, made by Ira Day, and payable as follows: $\$ 560$, due Sept. 10, $1880 ; \$ 800$, due Oct. 15,1880; $\$ 1100$, due Dec. 1, 1880 ; \$900, due Feb. 1, 1881, were exchanged for a single note. When will it fall due?
7. Charles Adams to Samuel Lewis, Dr.

What is the equated time of payment, allowing 60 da. credit on each item?
8. Bought goods at different dates, as follows :

Aug. 15, amounting to \$4\%5, on 6 mo . credit.

What sum will equitably discharge the whole debt November 10, allowing true discount at 7% ?
9. Purchased Mdse. of J. V. Farwell \& Co., as follows :

Jan. 1, a bill amounting to $\$ 3 \% 5.50$, on 4 mo. credit.

20,	6	168.75, " 5 mo.
Feb. 4,	6	386.25, " 4 mo .
March 11,		144.60, " 5 mo .
April 7,	6	386.90, " 3 mo .

What is the present worth of a note made May 1, in pay. ment of the whole, discounted at 6% ?

WERAGING WEEOUNTG?
491. An Account is a record of the amount and date af debit and credit transactions.

The term debit implies that something is owed; credit, something received. Thus, the purchase of goods on time is a debit transaction; the payment of money on account, a credit transaction.
492. Averaging Accounts is finding the average or equated time for paying the balance, or calculating the cash balance at any particular time.
4.93. To find the Equated Time for paying the balance of an account.

1. What is the equated time for the payment of the balance of the following account?

Dr.
William Marston.

$\begin{array}{r} 1880 . \\ \text { Feb. } 15 \end{array}$	To mdse. © 3 mo.	\$400	$\begin{aligned} & 1880 . \\ & \text { June } 4 \end{aligned}$	By cash	- •	\$400
Mar. 3	" " @ 4 mo .	500	" 10	" "	. .	200
" 24	" " @ 5 mo .	900	July 5	"	- -	600
Apr. 15	" " @ 3 mo.	1000				

OPERATION.
Take the earliest date at which any item on either side matures, as the standard.

Hence, the equated time is 83 da. after May 15, or Aug. 6.

PROOF (by reversing the standard).

Explanation.-Since $\$ 400$ is due May 15, if the settlement were made at that date, no interest would be due on that item; but the next item of $\$ 500$, due July 3, would be paid 49 da. before being due; and therefore the debtor would be entitled to the int. for that time. For the same reason he would be entitled to the int. of $\$ 1000$ for, 61 da., and of 900 for 101 da., making in all the int. of $\$ 1$ for 176400 da. For a similar reason the creditor is entitled to an allowance of int. equal to that of $\$ 1$ for 43800 da. Hence, the balance of interest in favor of the debtor is that of $\$ 1$ for 132600 da., which is the same as the int. of $\$ 1600$, the balance, for 83 da.; and, consequently, the equated time is 83 da. after the assumed date, May 15, or Aug. 6.

The reasoning in the Proof is based on precisely the same principle.
This is sometimes called the method of products; but instead of this we may find the interest at any rate per cent (12 is the most convenient), on each debit and credit item, and divide the balance of interest by the interest on the balance of the account for one day. The quotient will give the number of days to be added to, or subtracted from, the standard date to give the equated time.

In all cases where payment is made by note, add the three days of grace to the time the note has to run in reckoning the terms of credit pertaining to it.

2. Find the equated time for the following :

Er.
William Ralston.
$C r$.

1881.	To Mdse. @ 2 mo. .		1881.		
May 1		\$800	June 15	By Cash.	\$500
May 25	"	500	July 1	"	400
June 20	" " @ 3 mo.	750	Aug. 15	" "	1000
July 18	" " @ 2 mo	2000			

3. Find the equated time of the following :

Dr.
Samuel Sloan.
$C r$.

$\begin{aligned} & 1880 . \\ & \text { Aug. } 1 \end{aligned}$	Te Mdse. @ 6 mo. .	\$1500	$\begin{gathered} 1880 . \\ \text { Sept. } 25 \end{gathered}$	By Cash.	\$900
Sppt. 5	" " .	1200	Nov. 1	By	700
Oct. 10	@ 3 mo. .	800	Nov. 15	" "	450
Nov, 3	" "	950	Dec. 1 1881.	Note, 60da	550
Dec. 1	@ 4 mo. .	2000	Feb. 10	By Cash. .	1500

494. To find the Cash Balance at any given time.

1. What is the cash balance of the following account Jan. 2, 1881, interest at 6% ?

Dr. Alexander Matthews. Cr

1880.	To Mdse @ 6 mo	8700	1880		\$400
June 5	" " @ 4 mo.	500	Sept. 1	"	300
July 10	@ 5 mo.	100	Oct. 10	" "	0

OPERATION.

The equated time is 176 da. from Aug. 15, or Feb. 7, 1881 (493), the difference between which date and Jan. 2, 1881, is 36 da. Hence, the true present worth of $\$ 900$, the balance, for that time, at 6%, which is $\$ 894.63$, is the cash balance at that date.

The cash balance may also be found by finding the interest due on each item at the time specified, and deducting the balance of interest from the same due on the account, if in favor of the debtor, or adding it, if in favor of the creditor.
2. Of the following account, what is the cash balance Feb. 1, 1882, allowing interest at 6% ?

James Harrison.

$\begin{aligned} & 1881 . \\ & \text { July } 10 \end{aligned}$	To Mdse. @ 90 da.	\$875	$\begin{aligned} & 1881 . \\ & \text { Oct. } \end{aligned}$	By Cash.	\$750
Sept. 5	" " @ 60 da.	925	Nov. 15	"، ${ }^{\text {c }}$	500
Oct. 8	" @ 30 da .	463	Dec. 1	" "	350
Nov. 15	" @ 90 da.	517	${ }_{\text {Dec. }}^{\text {Des }}$ 1882. 30	" "	600
Dec. 1	@ 60 da .	1550	Jan. 20	" "	400

3. Allowing 60 da. credit on each debit item of the following account, what is the cash balance Sept. 15, 1880, the rate of interest being 7% ?

Dr. Amos Brown in acct. with Ira Smith. Cr.

$\begin{gathered} \hline 1880 . \\ \text { Jan. } 10 \end{gathered}$	To Mdse.	\$540	$\begin{gathered} 1880 . \\ \text { April } 1 \end{gathered}$	By note @ 60 da .	\$400
May. 15	" "	490	May 30	" Mdse. @ 30 da .	300
June 12	" "	670	Sept. 1	" Cash.	500
Aug. 1	" "	900			

4. Edgar Foreman gives his note at 3 mo . for the balance of the following account July 1. What is the face of the note, allowing interest at 6% ?

Dr.
Edgar Foreman.
Cr.

1882.						1882.		

5. Sold to John Rose, on 4 mo. credit, Mdse. as follows : Feb. 12, a bill amounting to $\$ 300$, and March 20, a bill of $\$ 400$. July 1 , he paid $\$ 200$; from what date must I reckon interest on the balance ?

2DEFFINTIONSE

495. Ratio is the relation of one number to another of the same denomination, expressed by the quotient obtained by dividing the first by the second.

Thus, the ratio of 6 to 2 is 3 , of $\$ 27$ to $\$ 3$ is 9 , and of 3 to 9 is $\frac{1}{3}$. A ratio is an abstract number; for, when the dividend and divisor are of the same denomination, the quotient is abstract (95, I). Ratio can exist only between numbers, or things of the same kind; a mile or a yard cannot be compared with a day or an hour; but a mile can be compared with a yard, when reduced to the same denomination, or 3 miles with 2 miles; and so a day may be compared with an hour, or 5 days with 6 days.

In order to form a ratio, length must be compared with length, time with time, weight with weight, and so on,

496. The Special Sign of Ratio is the Colon.

Thus, $8: 4$ is read the ratio of 8 to 4 , or 8 is to 4 , or 8 divided by 4 . Any one of the signs of division may be used instead of the colon.

For example, the ratio of 8 to 4 may be expressed thus, $8 \div 4$, or $\frac{8}{4}$. The colon is an abbreviation of the ordinary sign of division.

49\%. The Terms of a ratio are the two numbers compared.

Thus, in the expression $81: 27$, the terms of the ratio are 81 and 27 .
498. The Antecedent of a ratio is the first term, and the Consequent is the second term. The former is a dividend, the latter a divisor.

The Antecedent and Consequent together form a Couplet. Ratios are of two kinds: Simple Raiios and Compound Ratios.
499. A Simple Ratio is the ratio of two numbers.

Thus, $5: 6, \$ 8 \frac{1}{2}: \$ 12$, and 4 qt. : 12 qt., are simple ratios.
500. A Compound Ratio is the ratio of the products of the corresponding terms of two or more ratios.

Thus, the ratio compounded of $8: 4$ and $9: 12$ is $8 \times 9: 4 \times 12$, or $72: 48$. When the multiplication is performed, the result is a simple ratio.
501. The Reciprocal of a Ratio is the quotient found by dividing the consequent by the antecedent.

Thus, the reciprocal of the ratio $8: 4$ is $\frac{4}{8}$ or $\frac{1}{2}$.
To find the ratio of two fractions, reduce them to fractions having a common denominator, and then compare their numerators.

Formulas : $\begin{cases}\text { 1. } & \text { Ratio }=\text { Antecedent } \div \text { Consequent } . \\ \text { 2. } & \text { Consequent }=\text { Antecedent } \div \text { Ratio. } \\ \text { 3. } & \text { Antecedent }=\text { Consequent } \times \text { Ratio. }\end{cases}$

Principles.

502. Since the antecedent is a dividend, and the conse quent a divisor, it follows, that
503. Multiplying the antecedent, $\}$ Multiplies the ratio. or Dividing the consequent, $\}(\mathbf{1 0 5}, \mathrm{I}$.
II. Dividing the antecedent, or $\}$ Divides the ratio. Multiplying the consequent, $\} \quad(\mathbf{1 0 5}, \mathrm{II}$.
III. Multiplying or dividing both) Does not change the value terms of a ratio by the same $\}$ of the ratio. number
(105, III.)

General Statement.

503. A change in the first term of a ratio produces a Like change in the value of the ratio; but a change in the second term produces an opposite change in the value of the ratio.

Exercises.
504. 1. Express the ratio of 28 to 14 ; of 14 to 28 ; of $\$ 12$ to $\$ 6$; of $\$ 8$ to 50 cents ; of 3 wk . to ${ }^{7} \%$ da.
2. Find the ratio of 3 yd .1 ft . to 2 ft .6 in .
3. Can you find the ratio of $\$ 18$ to 3 ft .? Why not?
4. Reduce each of the following ratios to its lowest terms: $\frac{12}{1}, 18: 6, \$ 12 \div \$ 8,36$ yd. $: 4 \mathrm{ft} ., 1 \mathrm{bu} .: 16 \mathrm{qt}$.
5. Find the ratio of $\frac{3}{4}$ to $\frac{1}{2}$; of $\frac{4}{8}$ to $\frac{3}{8}$; of $1 \frac{1}{2}$ to $\frac{2}{3}$.
6. Reduce each of the following ratios to another whose terms shall be integral : $\frac{5 \frac{1}{2}}{3} ; 6 \frac{3}{4}: 8 \frac{5}{6} ; 3{ }^{r} \frac{1}{2}: 18 \frac{3}{4}$.
7. Find the ratio which is compounded of $3: 5$ and $7: 9$.
8. What is the difference between $5: 3$, and the reciprocal of $3: 5$? Between $9: 4$ and $4: 9$?
9. The first term of a ratio is $\frac{1}{2} \frac{3}{8}$, and the second term $3 \frac{1}{4}$; what is the value of the ratio?
10. The first term is 75, and the ratio 7; find the second term.
11. The second term is $\$ 6$, and the ratio $3 \frac{1}{2}$; find the first term.
12. Find the number which has to 27 the ratio of 5 to 3.
13. Which is greater, $8: 5$ or $9: 6$? $5: 8$ or $15: 24$? $\frac{4}{8}$ or $\frac{5}{10}$? $\frac{6}{11}$ or $\frac{2}{5}$? $\frac{1}{8}$ or $\frac{2}{15}$?
14. Name three ratios which are equal to $10: 2$; three which are equal to $\frac{2}{3}$.

INDUCTIVE EXERCISES.

505. 506. Compare $6: 2$ with $24: 8$.

Which of the following statements are correct?
2. $27: 9=81: 27 ; 3: 12=12: 36 ; 2: 3=5: 6 ; 3: 4$ $=6: 8 ; 28: 4=16: 2$.
3. The ratio of 5 to 3 is equal to the ratio of 10 to what number?
4. $27: 9=9:$?
5. $3: 2=?: 4$.
6. $8: ?=12: 6$.
\%. ?: $5=8: 4$.
8. $\$ 30: \$ 6=$? $: 8$.

$$
\begin{aligned}
& \text { 9. } 4 \div \frac{1}{2}=6 \div ? \\
& 10 . \\
& \frac{3}{4} \div \frac{1}{2}=? \div \frac{1}{3} . \\
& 11 . \\
& \text { 12. } \quad ? \div ?=\frac{7}{8} \div \frac{2}{6} \div \frac{5}{8} . \\
& \text { 12. } \\
& \text { 13. } \frac{5}{16} \div \frac{1}{8} \div \frac{3}{8}=? \div \frac{2}{5} .
\end{aligned}
$$

2DEFINITIONSC

506. A Proportion is an equation in which each member is a ratio, both terms of which are expressed.

The equality of the ratios may be indicated either by the sign $=$, or by the double colon ::-

Thus, the equality of the ratios of 10 to 5 and 8 to 4 , may be indicated in any of the following ways: $10: 5=8: 4,10: 5:: 8: 4$, $\frac{10}{5}=\frac{8}{4}, 10 \div 5=8 \div 4$.

This proportion in any of its forms, is read, the ratio of 10 to 5 is equal to the ratio of 8 to 4 , or, 10 is to 5 as 8 is to 4 .
50% The Terms of a proportion are the numbers which are compared.

The first and second terms form the first couplet; the third and fourth, the second couplet.

Since it requires two numbers to form a ratio, every proportion must contain at least four terms.
508. A Proportional is any term of a proportion.
509. The Antecedents in a proportion are the ante. cedents of the ratios, or the first and third terms.
510. The Consequents are the consequents of the ratios, or the second and fourth terms.
511. The Extremes in a proportion are the first and fourth terms.
512. The Means are the second and third terms.

If three numbers are such that the ratio of the first to the second is equal to that of the second to the third, the second is said to be the Mean Proportional between the first and second.

Thus, in the proportion $3: 6=6: 12,6$ is the mean proportional between 3 and 12, and 12 is the third proportional to 3 and 6.
513. A Simple Proportion is a proportion in which each ratio is simple. Thus, 2:4=61 $: 13$ is a simple proportion.
514. A Compound Proportion is a proportion which has a compound ratio.

Thus, $\left.\begin{array}{c}2: 3 \\ 5: 6\end{array}\right\}=20: 36$, is a compound proportion. This proportion may be read, 2×5 is to 3×6 as 20 is to 36 .
515. The proportion $2: 3=4: 6$ may be written $\frac{2}{3}=\frac{4}{6}$ (506). Reducing $\frac{2}{3}$ and $\frac{4}{6}$ to equivalent fractions having a common denominator, $\frac{2 \times 6}{18}=\frac{4 \times 3}{18}$. Since these fractions are equal and have a common denominator, their numerators are equal ; that is, $2 \times 6=4 \times 3$.

Hence, the following
516. Principles.-I. The product of the extremes of a proportion is equal to the product of the means.
II. Either extreme is equal to the product of the means drvided by the other extreme.
III. Either mean is equal to the product of the extremes lwided by the other mean.
These principles are applicable also to a compound proportion.

Thus the compound proportion $\left.\begin{array}{l}2: 3 \\ 5: 6\end{array}\right\}=20: 36$ may be reduced to the simple proportion $10: 18=20: 36$, and $10 \times 36=18 \times 20$.

ExErcises.

51\%. Find the omitted term, which is represented by x, in each of the following proportions:

1. $12: 1=x: 144$.
2. $20: x=50: 120$.
3. $x: 4=\$ 80: \$ 4$.
4. $\$ 180: \$ x=\frac{1}{8}: \frac{3}{8}$.
5. $37 \frac{1}{2}: 4 \frac{1}{4}=x: 11 \frac{1}{3}$.
6. $1.875: .625=12.5: x$.
7. $17 \frac{1}{2}: 2 \frac{1}{2}=875: x$.
8. $4 \frac{1}{3}$ yd. : x yd. $=\$ 9.50$: \$28.50.

$$
\text { 9. } \left.\begin{array}{l}
2: 3 \\
5: 6
\end{array}\right\}=20: x
$$

$$
\text { 10. } \left.\begin{array}{l}
4: 6 \\
5: 7
\end{array}\right\}=x: 7 \text { 7. }
$$

$$
\text { 11. } \left.\begin{array}{r}
2: 3 \\
10: x
\end{array}\right\}=10: 18
$$

$$
\left.\begin{array}{ll}
\text { 12. } & 4: 6 \\
& 7: 8
\end{array}\right\}=\left\{\begin{array}{l}
7: 10 \\
5: x .
\end{array}\right.
$$

518. The Statement of a problem in proportion consists in arranging the given and the required quantities in the form of a proportion.

It is usually convenient to make the required quantity the fourth term of the proportion, or the consequent of the second couplet; the given quantity of the same kind or denomination will be the antecedent of that couplet, or third term of the proportion.

Written Exercises.

519. 520. If 3 yd . of cloth cost $\$ 15$, what will 12 yd . cost at the same rate?
statement.
Explanation.-Denote the cost of 12 yd . by $\$ x$; then it is evident that $\$ x$ is as many times greater than $\$ 15$ as 12 yd . is greater than 3 yd . Hence, by Prin. II,

$$
x=\frac{\$ 15 \times \chi \AA^{4}}{\$}=\$ 60 .
$$

$$
\begin{gathered}
3 \text { yd. : } 12 \text { yd. }=\$ 15: \$ x . \\
\$ 15 \times 12 \div 3=\$ 60 . \\
\$ \left\lvert\, \begin{array}{c}
\$ 15 \\
x=\$ 60
\end{array}\right.
\end{gathered}
$$

2. A man performs a journey in 20 hr . by traveling 2 mi . an hour ; how many hours will he require to perform the same journey if he travels 6 mi . an hour?

Explanation.- Denote the required number of hours by x; then it is evident that 20 hr . is as many times greater than $x \mathrm{hr}$. as 6 mi . is greater than 2 mi ., for the time required diminishes in the same ratio as the rate of travel increases. Hence,

STATEMENT. $6 \mathrm{mi} .: 2 \mathrm{mi} .=20 \mathrm{hr}:: x \mathrm{hr}$.

${ }^{3}$ ¢
$x \mid 20$
$\frac{x}{2}$
$3 x \mid 20$
$x=6 \frac{2}{3} \overline{\mathrm{hr}}$.

$$
x=\frac{20 \times \nsim}{\phi^{3}}=6 \frac{2}{3} \mathrm{hr} . \quad \text { (PriN. II.) }
$$

The ratio of the times is in the inverse ratio of the rates of travel; or, the time is inversely proportional to the rate of travel.

Rule.-1. Write for the third term that number which is of the same kind as the number to be found.
2. Write the two remaining numbers for the first couplet, so that their ratio shall be equal to that of the third term to the number sought.
3. Divide the product of the means by the given extreme, and the result will be the fourth term, or the number sought.

If the first ratio is compound, compare every two numbers of the same unit value, and arrange the terms of each couplet in respect to the third term of the proportion as if it were the first couplet of a simple proportion.
3. If 5 men earn $\$ 60$ in 8 days, how much will 7 men earn in 12 days at the same rate?

Explanation.-The work of 5 men for 8 da . is equivalent to the work of 1 man for 5×8, or 40 da., and the work of 7 men for 12 da . is equivalent to the work of 1 man for 7×12, or 84 days. Hence, the question may be stated as follows: If a man can earn $\$ 60$ in 40 da., how much can he earn in 84 da.? By the rule, $40: 84=\$ 60: \$ x$; whence, by Prin. II,

$$
x=\frac{\$ \phi^{\$ 6} \times{ }^{\gamma} \times \not \times 1 中^{3}}{\phi \times \$}=\$ 126
$$

Such questions as this are usually regarded as belonging to Come pound Proportion, but a simple reduction brings them under the preceding rule.
4. If 16 horses eat 96 bu . of oats in 42 da., in how many days will 7 horses eat 66 bushels?
5. If 900 lb . of merchandise can be carried 26 mi . for 60 cents, how many miles can 3 tons be carried for $\$ 8$?

CAUSE AND EFFECT.

520. The relations of the terms of a proportion may also be regarded as a comparison of two causes and their corresponding effects, expressed as follows:

1st Cause : 2d Cause $=1$ st Effect : 2d Effect ${ }_{\text {e }}$

Written Exercises.

521. 522. If 12 men earn $\$ 72$ in 1 wk., how much will 18 men earn, at the same rate, and in the same time?

Explanation.-Denote the required term by $\$ x$. Then the first cause is 12 men and the second cause is 18 men ; and since like causes can be compared, they may form the first couplet. The first effect is $\$ 72$ earned, and the second effect is $\$ x$ earned; and since like effects have the same ratio as their causes these form the second couplet of the proportion, and the whole may be read, If 12 men in 1 wk . earn $\$ 72,18 \mathrm{men}$ in the same time will earn $\$ x$, or how many dollars? Hence, 12 men: 18 men $=$ $\$ 72: \$ x ; x=\frac{\$ 72 \times 18}{12}=\$ 108$.
2. If 6 men in 4 da., working 10 hr . a day, can reap 16 acres, in how many days can 10 men , working 12 hr . a day, reap 24 acres?

STATEMENT.

Explanation.-The first cause is the labor of 6 men, for 4 da . of 10 hr . each ; the second cause is the labor of 10 men , for x days of 12 hr . each ; the first effect is the reaping of 16 acres; and the second effect is the reaping of 24 acres. The question will then read, If 6 men in 4 da., working 10 hr . a day, reap 16 acres, 10 men in x, or tow many days, working 12 hr . a day, will reap 24 acres? Hence,

$$
x=\frac{\stackrel{3}{3}^{3} \times 4 \times 1 \emptyset \times 24}{1 \emptyset \times 12 \times 16}=3 \mathrm{da}
$$

Solve by either method the following .
3. If 10 bu . of wheat produce 3 bbl . of flour, how many bushels will be required to produce 120 bbl . of flour?
4. If 6 cloaks can be made from 27 yd . of cloth, how many yards will be required for 32 cloaks?
5. If 9 bales of cotton can be carried 100 mi . for $\$ 6$, how far can 17 bales be carried for the same money?
6. If $2 \frac{3}{4} \mathrm{yd}$. of broadcloth are worth $\$ 23.10$, what is the value of $16 \frac{7}{8} \mathrm{yd}$., at the same rate?
7. If $\frac{3}{4}$ of an acre of land cost $\$ 60$, what will $87 \frac{1}{2}$ acres cost, at the same rate?
8. How many yards of carpeting $\frac{3}{4}$ of a yard wide, will cover a floor 30 ft . long and 24 ft . wide?
9. If I lend a man $\$ 300$ for 6 mo., for what time should I have the use of $\$ 450$ to equalize the favor?
10. If $\$ 700$ gain $\$ 84$, what will $\$ 400$ gain in the same time?
11. If I borrow a sum of money 6 mo , when interest is 8%, for what time should I lend the same sum, when interest is 6%, to requite the favor?
12. How many yards of cambric, 1 yd. wide, will be required to line 16 yd. of silk, 24 in . wide?
13. If a pole 26 ft . high cast a shadow of 8 ft ., what length of shadow will a church spire $346 \frac{3}{4} \mathrm{ft}$. high cast at the same time?
14. If 15 cwt . of sugar cost $\$ 81$, what will be the cost of 2 T. 17 cwt .50 lb. , at the same rate ?
15. If 24 men can dig a trench in 12 days, how long would the same work employ 9 men?
16. What is the cost of 20 yd . of muslin, $1 \frac{1}{8} \mathrm{yd}$. wide, if 16 yd . of the same quality, $1 \frac{1}{4} \mathrm{yd}$. wide, cost $\$ 2 \frac{1}{2}$?

1\%. If 72 yd . of carpeting, $\frac{3}{4} \mathrm{yd}$. wide, will cover a floor, how many yards, $\frac{7}{8}$ yd. wide, will cover the same floor?
18. If 25 men can do a piece of work in 24 da., working 8 hr . a day, how many hours a day will 30 men be required to work, in order to do the same work in 16 days?
19. If a pile of wood 36 ft . long, 4 ft . wide, and 5 ft high, costs $\$ 58.50$, what is the cost of a pile 60 ft . long, 4 ft . wide, and 6 ft . high, at the same price?

20 . If 15 A .100 P . of land produce 245 bu . of grain, how many bushels will 62 A .80 P . of the same land produce?
21. If 10 men can perform a piece of work in 24 da., how many men can perform another piece of work, 7 times as great in one-fifth of the time?
22. If .85 of a gallon of wine cost $\$ 2.72$, what is the cost of .25 of a gallon?
23. What is the cost of 38.25 A . of land, if $4 \frac{1}{2} \mathrm{~A}$. cost \$25.50?
24. If 2.5 tons of freight can be conveyed 2434 mi . for $\$ 5$, how far can 22.5 cwt. be conveyed for the same money?
25. If a field of 10 acres be sufficient to pasture 20 head of cattle through the summer, how many acres will be sufficient for 35 head of cattle for the same time?
26. If 20 masons build a wall 50 ft long, 2 ft . thick, and 14 ft . high, in 12 da., of 7 hr . each, in how many days, of 10 hr . each, will 60 masons build a wall 500 ft . long, 4 ft . thick, and 16 ft . high ?
27. If 150000 bricks are required to build a wall $1 \frac{1}{2} \mathrm{ft}$. thick, 30 ft . high, and 216 ft . long, how many will be required to build a wall 2 ft . thick, 24 ft . high, and 324 ft long?
28. What is the weight of a block of stone 12 ft .6 in . long, 6 ft .6 in . broad, and 8 ft .3 in . deep, if a block of the same stone 5 ft . long, 3 ft .9 in . broad, and 2 ft .6 in . deep, weighs 7500 lb ?

522. Partnership is the association of two or more persons for the carrying on of some particular business, with joint capital.

The persons thus associated are called Partners ; and the association is called a Firm, Company, or House.
523. The Capital consists of the money, or other property invested by the several partners, constituting what is called the Investment, or Joint Stock.
524. The Resources, Assets, or Effects of a firm, consist of the property which it owns, and the debts due to it.
525. The Liabilities of a firm are its debts.

The excess of resources over liabilities at any time constitutes its Net Capital.

Each partner's stock increased by gain, or diminished by loss, at the time of settlement, is called his interest in the business at that time.

The process of finding the share of the whole gain or loss to be apportioned to each member of a firm at the time of final settlement, is called Partnership Average.

When each partner's stock is employed for the same period of time, it is sometimes called Simple Average; and when employed for different periods of time, it is called Compound Average.

At the expiration of certain periods, the gains or losses are apportioned among the members of the firm according to the following
526. Principle. The greater the amount of capital invested by any partner, and the longer it remains invested, the greater his apportionment of gain or loss.

Written ExERCises.

52\%. To apportion the gain or loss when each partner's investment has been employed for the same period of time.

1. Three persons engage in business with a capital of $\$ 10000$, of which A's share is $\$ 3500$; B's, $\$ 4000$; and C's, $\$ 2500$. They gain $\$ 4000$; what is each partner's share of the gain?

Operation I. (By Fractions.)

$$
\$ 3500+\$ 4000+\$ 2500=\$ 10000 .
$$

$$
\frac{3500}{10000}=\frac{7}{20} ; \$ 4000 \times \frac{7}{2_{0}}=\$ 1400 \text {, A's gain. }
$$

$$
\frac{4000}{10000}=\frac{2}{5} ; \$ 4000 \times \frac{2}{5}=\$ 1600, \text { B's gain. }
$$

$$
\frac{2500}{10000}=\frac{1}{4} ; \$ 4000 \times \frac{1}{4}=\$ 1000 \text {, C's gain. }
$$

Explanation.-Since A's share of the capital, $\$ 3500$, is $\frac{7}{20}$ of the whole capital, his share of the gain is $\frac{7}{20}$, or $\$ 1400$; and for a similar reason, B's share is $\frac{2}{5}$, or $\$ 1600$; and C's, $\frac{1}{4}$, or $\$ 1000$.

Operation II. (By Percentage.)

$\$ 4000$ (gain) $=\frac{4000}{10000}$, or $\frac{2}{5}$, or 40%, of the whole capital; hence,

$$
\left.\begin{array}{l}
\text { A's share } \\
\text { B's } 6 \\
\text { C's } \quad 6
\end{array}\right\}=40 \% \text { of }\left\{\begin{array}{l}
\$ 3500=\$ 1400, \text { A's gain. } \\
4000=1600, \text { B's } \\
2500=1000, \text { C's }
\end{array}\right.
$$

Explanation.-Since $\$ 4000$, the whole gain, is 40% of $\$ 10000$, the whole capital, the shares are 40% respectively of the several shares of the capital.

Operation III. (By Proportion.)

$$
\$ 10000:\left\{\begin{array}{c}
\$ 3500 \\
4000 \\
2500
\end{array}\right\}=\$ 4000:\left\{\begin{array}{l}
\$ 1400, \text { A's gain. } \\
1600, \text { B's } 6 \\
1000, \text { C's } 6
\end{array}\right.
$$

Explanation.-The ratio of the whole capital to each partner's share of the same is equal to the ratio of the whole gain or loss to each partner's share of the gain or loss.
2. At the expiration of a year from the commencement of their business, Adams, Morton \& Co., after taking an account of stock, find the amount of merchandise, as per inventory, to be $\$ 17450$; cash on hand, $\$ 10250$; debts due the firm, $\$ 11300$; amount of firm's indebtedness, $\$ 15500$. Make out a statement, showing the resources and liabilities of the firm, with the net capital and gain ; and find each partner's share of the latter, the respective shares of capital being as follows: J. Adams, \$8000; W. Morton, \$5000; and J. French, $\$ 3000$.

OPERATION.

Resources.

Mdse. as per inventory, $\$ 17450$
Cash in hand, 10250
Debts due the company, 11300
$\$ 39000$
Liabilities.
Debts owed by the company, 15500
Net capital, \$23500

Investments.

J. Adams, $\$ 8000$
W. Morton, 5000
J. French, 3000

Total investments, . . . $\$ 16000$
Net gain, $\$ 7500$
$\left.\begin{array}{ll}\text { J. Adams is entitled to } & \frac{8000}{16000} \text {, or } \frac{1}{2} \\ \text { W. Morton " } & \text { " } \\ \frac{5000}{1600}, \text { or } \frac{5}{16} \\ \text { J. French " } & \text { " } \\ \frac{3000}{16000} \text {, or } \frac{3}{16}\end{array}\right\} \times \$ 7500=\left\{\begin{array}{r}\$ 3750.00 \\ 2343.75 \\ 1406.25\end{array}\right.$
3. A, B, and C enter into business with a capital of $\$ 30000$, of which A puts in $\$ 14000$; B, $\$ 9500$; and C, the remainder. They gain $\$ 16000$; what is each partner's share ?
4. Simpson, Brown \& Co. fail in business, their liabilities amounting to $\$ 35000$, and their resources to $\$ 16500$. They owe A $\$ 9000, \mathrm{~B} \$ 7500$, and C $\$ 11000$. What will each creditor receive?
5. Johnson Bros. \& Co. find the condition of their business as follows : Mdse. as per inventory, $\$ 49500$; notes due the firm, $\$ 32500$; cash on hand, $\$ 2 \% 000$; due, as per ledger, $\$ 31400$; notes against the firm, $\$ 29500$; other indebtedness, $\$ 15000$. The investments are: W. Johnson, $\$ 15000$; B. Johnson, $\$ 10000$; C. Mott, $\$ \% 000$. Make a statement, and apportion the gain or loss.
528. To apportion the gain or loss according to amount of capital invested, and time it is employed.

1. A engaged in business with a capital of $\$ 5000 ; 3 \mathrm{mo}$. afterward he took in B, with a capital of $\$ 6000$; and 4 mo. later he took in C, with $\$ 10000$. At the end of the year their profits were $\$ 10000$. What is the share of each?

operation.

$$
\begin{aligned}
& \$ 5000 \times 12=\$ 60000 ; \$ 6000 \times 9=\$ 54000 \\
& \$ 10000 \times 5=\$ 50000 \\
& \$ 60000+\$ 54000+\$ 50000=\$ 164000
\end{aligned}
$$

$$
\$ 164000:\left\{\begin{array}{c}
\$ 60000 \\
54000 \\
50000
\end{array}\right\}=\$ 10000:\left\{\begin{array}{c}
\$ 3658.54, \text { A's gain. } \\
3292.68, \text { B's } \\
3048.78, \text { C's }
\end{array}\right.
$$

Explanation.-The use of $\$ 5000$ for 12 mo . is the same as the use of $\$ 60000$ for 1 mo ; the use of $\$ 6000$ for 9 mo . is the same as that of $\$ 54000$ for 1 mo ; and the use of $\$ 10000$ for 5 mo . the same as that of $\$ 50000$ for 1 mo . Hence, the use of the whole capital during the year is the same as that of $\$ 164000$ for 1 mo . The ratio of the whole capital to each partner's share of the same is equal to the ratio of the whole gain or loss to each partner's share of the gain or loss.
2. Jan. 1, 1881, two men, A and B, commenced business with $\$ 2400$ capital, each furnishing $\$ 1200$; March $1, B$ put in $\$ 1200$ more; and April 1 they took in C, with $\$ 3000$. At the end of a year how should a gain of $\$ 2000$ be appore tioned?
3. A and B are in business Jan. 1, with a capital of $\$ 30000$, of which A owns $\frac{5}{8}$ and B $\frac{3}{8}$. March 1, A puts in $\$ 10000$; and B draws out $\$ 1500$; and June 1, A draws out $\$ 15000$, and B puts in $\$ 5000$. At the end of the year, how shall a gain of $\$ 10000$ be apportioned ?

QDEFINTIONSC

529. A Power of a number is either the number itself, or the product of factors, each of which is equal to that number.

Thus, 5 is the first power of $5 ; 5 \times 5$, or 25 is the second power of 5 ; $5 \times 5 \times 5$, or 125 , is the third power of 5 , and so on.

The second power of a number is sometimes called the square of that number, because the area of a square is equal to the second power of one of its sides.

The third power of a number is sometimes called the cube of that number, because the volume of a cube is equal to the third power of one of its edges.
530. The Root or Base of a number, regarded as a power, is either the number itself, or one of its equal factors; and The Degree of a power is equal to the number of times the root is used to produce the power.

Thus, $4 \times 4 \times 4$, or 64 , is the third power of 4 , and 4 is the root or base of that power.
531. An Exponent of a power is a number used to denote the degree of a power. It is written to the right of the base and a little above it.

Thus, $\left.27^{2},\left(\frac{3}{14}\right)^{3},(4)^{2}\right)^{4}$, indicate respectively, the square of 27 , the sube of $\frac{3}{14}$, and the fourth power of $4 \frac{2}{5}$.
532. Involution is the process of finding any power of a number, and a number is said to be involved or raised to a power, when any power of it is found.
533. A Perfect Square is a number which can be resolved into two equal factors; a Perfect Cube is a number which can be resolved into three equal factors ; and so on.

Thus, 81 is a perfect square, and 27 is a perfect cube; for $81=9 \times 9$, and $27=3 \times 3 \times 3$.

Written Exercises.

534. To find any power of a number.

1. Find the third power of 2%

Explanation.-The product of 27 multiplied by itself is 729 ; and 729 multiplied by 27 is 19683 , which, being the product of 27 by 27 by 27 , is the third power of 27 .

Rule.-Find the product of the given number used as many times as a factor as there are units in the exponent of the power.
2. Find the fifth power of $\frac{2}{3}$.

> OPERATION.

$$
\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3}=\frac{2^{5}}{3^{5}}=\frac{32}{243} .
$$

Hence,
A fraction may be raised to any power by raising each of its terms to the required power.

Involution may sometimes be facilitated by means of the following

Principle.-If'two or more powers of the same number be multiplied together the product will be a power, the degree of which is equal to the sum of the degrees of the given powers.

Thus,

$$
3^{2} \times 3^{3} \times 3^{4}=3^{9}
$$

The seventh power of 2 may be found by multiplying 16 , which is the fourth power of 2 , by 8 , which is the third power of 2 .
3. Find the squares of the numbers from 1 to 12 inclusive.
4. Find the cubes of the numbers from 1 to 12 inclusive.
5. Find the squares of $\frac{3}{4}, \frac{4}{7}, \frac{7}{12}, 2 \frac{1}{2}$, and $8 \frac{3}{4}$.
6. Find the cubes of $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, 2 \frac{1}{4}$, and $3 \frac{1}{2}$.
\%. Find the squares of $.1, .02,3.5,1.85, .003$.
If a number containing a decimal fraction be squared, will the number of decimal places be even or odd? Why?
8. Find the cubes of .2, .03, 2.5, 1.05, 1.001.
9. Find the square, cube, and fourth power of 1500.

If a number is terminated by ciphers, how many ciphers will there be in its square? In its cube? In its fourth power?
10. Multiply 15^{3} by 15^{2}.

What power of a number is produced by multiplying its cube by its square?
11. Find the product of $8,8^{2}$, and 8^{3}.

What power of a number is produced by multiplying together its first power, square, and cube?
12. What is the square of 5^{3} ? The cube of 5^{2} ? The cube of 5^{3} ?

What power of a number is the square of its cube ? The cube of its square? The cube of its cube?
13. What is the difference between $(2 \times 3 \times 5)^{2}$ and $2^{2} \times 3^{2} \times 5^{2}$?

Is the square of the product of two or more factors equal to the product of the squares of these factors?
535. To find the square of a number in terms of its tens and units.

1. Find the square of 8% in terms of its tens and units.

Explanation.-The pro. duct of $80+7$ multiplied by 7 is $80 \times 7+7^{2}$, and the product of $80+7$ multiplied by 80 is $80^{2}+80 \times 7$; hence, $80^{2}+2 \times 80 \times 7+7^{2}$, which is the sum of these partial products, is the square of $80+7$. Hence,
operation.

| 87 | $=$ | $80+7$ |
| ---: | :--- | ---: | :--- |
| 87 | $=$ | $80+7$ |
| 609 | $=80 \times 7+7^{2}$ | |
| 6960 | $=80^{2}+80 \times 7$ | |
| 75669 | $=80^{2}+2 \times 80 \times 7+7^{2}$ | |

Principle.-The square of a number composed of tens and units consists of three parts; 1st, the square of the tens; 2d, twice the product of the tens by the units; 3d, the square of the units.

Denote the tens and units of a number by t and u respectively; then,
Formula: $(t+u)^{2}=t^{2}+2 \times t \times u+u^{2}$.

GEOMEIRICAL ILLUSTRATION.

$t \times u=20 \times 5=100$	$u^{2}-25$
20	5
$t t^{2}=20^{2}=400$	

Let ABCD be a square, each side of which is 25 , and let lines be drawn as indicated in the figure ; then it is evident that the square $A B C D$, which is the square of 25 , is composed of two squares, one of which is the square of the tens $(20)^{2}$, the other the square of the units $(5)^{2}$, and two rectangles, eacl of whose areas is 20×5.

1. Find the square of 42 by the preceding principle. operation.

$$
\begin{aligned}
& t^{2}=40^{2}=1600 \\
& 2 \times t \times u=2 \times 40 \times 2=160 \\
& u^{2}=42^{2}=4 \\
& \frac{t^{2}+2 \times t \times u+u^{2}}{}=40^{2}+2 \times 40 \times 2+2^{2}=1764=42^{2} .
\end{aligned}
$$

In like manner
2. Find the square of 3%. Of 56 . Of 48 . Of 65 .
3. Find the second power of 92 . Of 125. Of 132.
536. To find the cube of a number in terms of its tens and units.

Find the cube of 8% in terms of its tens and units. operation.

Explanation.-The square of 87 is $80^{2}+2 \times 80 \times 7+7^{2}$ (535), and the product of this square by $80+7$ is $80^{3}+3 \times 80^{2} \times 7+3 \times 80 \times 7^{2}+7^{3}$, which is the cube of $80+7$. Hence,

53\%. Principle. The cube of a number composed of tens and units consists of four parts: 1st, the cube of the tens; 2d, three times the square of the tens multiplied by the units; 3d, three times the tens multiplied by the square of the units; 4 th, the cube of the units. Hence,

Formula: $\quad(t+u)^{3}=t^{3}+3 \times t^{2} \times u+3 \times t \times u^{2}+u^{3}$.
In like manner

1. Find the cube of 64 . Of ${ }^{1} 2$.
2. Find the third power of 84 . Of 125 .

GEOMETRICAL ILLUSTRATION.

Fig. 1.

Fig. 2.

Let Fig. 1 represent a cube, the edge of which is 25 , and suppose it to be divided into parts as indicated in the figure; then it is evident by Fig. 2 and Fig. 3 that these parts are (1) the cube A whose edge is 20 and volume 20^{3}, (2) the three equal rectangular solids B , whose combined volumes amount to $3 \times 20 \times 20 \times 5$, or 3×20^{2} $\times 5$, (3) the three equal rectangular solids C, whose combined volumes amount to $3 \times 20 \times 5^{2}$, (4) the cube D whose edge is 5

Fig. 3.
 and volume 5^{3} 。
3. Find the cube of 3% by the preceding principle.

Operation.	
30^{3}	$=27000$
$3 \times 30^{2} \times{ }^{7}$	$=18900$
$3 \times 30 \times 7^{2}$	$=4410$
γ^{3}	$=$
	$\quad 343$

In like manner

4. Find the cube of 25 . Of 39 . Of 45 . Of 51 .
5. Find the third power of 96 . Of 101. Of 126 . Of 142 .

Howdriont 2DE FINITI ONS

538. A Root of a number is either the number itself or one of its equal factors.

Thus, the square root of 49 is 7 , for $7^{2}=49$, and the cube root of 64 is 4 , for $4^{3}=64$.

The first root of a number is the number itself.
539. Evolution is the process of finding a root of a number. The root is then said to be evolved or extracted.

Evolution is the converse of Involution. In Involution, the root is given and the power is required ; in Evolution the power is given and the root is required.
540. The Radical Sign, $\sqrt{ }$, is the character used to indicate that a root is to be extracted.
541. The Index of a root is the number placed over the radical sign to show what root is to be extracted or expressed.

Thus, $\sqrt[3]{27}, \sqrt[4]{64}, \sqrt[5]{32}$ indicate respectively, the cube root of 27 , the fourth root of 64 , and the fifth root of 32 .

The square root is usually indicated by the radical sign without the index.
Evolution is sometimes indicated by a fractional exponent. Thus, $9^{\frac{1}{4}}$ is equivalent to $\sqrt{9}, 2^{\frac{1}{3}}$ is equivalent to $\sqrt[3]{27}$.

The numerator of the exponent indicates a power, and the denomi nator a root. Thus, $8^{\frac{2}{3}}$ is equivalent to $\sqrt[3]{8^{2}}$.

542. Principles. I. The square of a number contains either twice as many figures as that number, or twice as many, less one. Thus,

$$
\begin{aligned}
2^{2} & =4, & 10^{2} & =100, \\
9^{2} & =81, & 100^{2} & =10000, \\
99^{2} & =9801, & 1000^{2} & =1000000, \\
.05^{2} & =.25, & 2.5^{2} & =6.25
\end{aligned}
$$

Hence,

II. If any perfect square be separated into periods of two figures each, beginning at the place of the decimal point, the number of periods will be equal to the number of figures in the square root of that number.

If the given number is integral and not a perfect square, the number of periods will be equal to the number of figures in the entire part of the root.

Written Exercises.

543. To find the square root of a number.

1. Find the square root of 625 .

$$
\begin{aligned}
& \begin{array}{r}
t^{2}+2 \times t \times u+u^{2}=625(20+5=25 \\
t^{2}=\quad 20^{2} \quad=400
\end{array} \\
& \hline \begin{array}{l}
2 \times t \times u+u^{2}= \\
2 \times t \times u+u^{2}=2 \times 20 \times 5+5^{2}=225 \\
\hline
\end{array}
\end{aligned}
$$

Explanation.-Since 625 has two periods, its square root has two figures. Since the square of tens contains no significant figure of a lower order than hundreds, 25 cannot be a part of the square of the tens of the root.

Hence, the tens of the root must be found from the first period 6. The greatest number of tens whose square is contained in 6 , is 2. Subtracting the square of 2 tens from 625, the remainder is 225 . This remainder consists of twice the product of the tens of the root by the units, and the square of the units (535). Hence, if 225 be divided by 40 , which is twice the tens of the root, the quotient 5 will be either equal to the units' figure of the root or greater. Now if $2 \times 20 \times 5+5^{2}$, or $(40+5) \times 5$ be subtracted from 225 , the remainder will be 0 . Hence 25 is the required root.

In practice the work is usually abridged as follows:

$45)$| $6,25(25$ |
| :--- |
| $\frac{4}{225}$ |
| $\frac{225}{2}$ |

In this example, 40 is the partial or trial divisor, and 45 is the complete divisor.

Geometrical Illustration.
Let Fig. 1 represent a square whose area is 625 square feet. The area of a square is equal to the square of one of its sides ; hence, a side may be found by extracting the square root of the area. The square root of 625 lies between 20 and

Fig. 1.

Fig. 2.
 30 , for 20^{2} is less than 625 , and 30^{2} is greater. The square root of 625 is therefore 2 tens plus an unknown number of units. If the square, whose side is 20 ft . and area 400 sg . feet, be taken from Fig. 1, the remainder, Fig. 2, will contain 225 sq. feet. This remainder consists of two equal rectangles, each of which is 20 ft . long, and a square whose side is equal to the width of the rectangles.

If the area and length of a rectangle are known, its width may be found by dividing the area by the length. Now the two rectangles contain the greater part of the 225 sq. feet; hence, 2×20, the length of the two rectangles taken together, may be used as a trial divisor, to find the width.

Dividing 225 by 40 , the quotient is 5 . But the two rectangles do not contain all the area of Fig. 2; hence, this quotient may be too great. To test this quotient, find the area of Fig. 2, considering 5 feet as the width of the rectangles. Thus, $2 \times 20 \times 5+5^{2}=(40+5) \times 5=225$. This is the area which Fig. 2 is known to contain; hence, 5 feet is the true width. Therefore, a side of the given square is 25 feet.
2. Find the square root of $428 \% 6304$.

OPERATION.

$$
\begin{aligned}
& 42,87,63,04(6000+500+40+8=6548 \\
& 6000^{2}=36000000
\end{aligned}
$$

$6000 \times 2=12000) 6876304$
$\{12000+500) \times 500=6250000$ $6 5 0 0 \times 2 = 1 3 0 0 0 \longdiv { 6 2 6 3 0 4 }$
$(13000+40) \times 40=521600$
$6540 \times 2=13080) 104^{\prime \prime} 04$
$(13080+8) \times 8=\underline{104704}$

The partial divisor at each step is found by doubling that part of the root already found.

ABRIDGED OPERATION.
$42,87,63,04$ (6548 36 $125) 687$ 625
1304) 6263

5216
13088) 104704 103704
3. Find the square root of 232.5625 . operation.

2,32.56,25 (15.25
Explanation.-Begin at the decimal point, and proceed both toward the left and the right to separate into periods; then proceed as in the extraction of the square root of integers. The number of decimal places in the root will be equal to the number of decimal periods in the given number.
$2,32.56,25$
$25)$
$302)$

$3045) \frac{1}{132}$| $\frac{125}{756}$ |
| :--- |
| $\frac{604}{15225}$ |

4. Find the square root of ${ }_{6}^{625} 56$

Explanation.-Since a fraction may be raised to any power by raising each of its terms to the required power (533), it follows that the $\sqrt{\frac{625}{6561}}=\frac{\sqrt{625}}{\sqrt{6561}}=\frac{25}{81}$ square root of a fraction is found by axtracting the square root of each of its terms.
5. Find the square root of $\frac{1024}{2704}$.
6. Find the square root of $\frac{92218}{10816}$.
7. Find the square root of 12321.

Rules.

I. To find the square root of an integer, or of a number containing a decimal.

1. Separate the given number into periods of two figures each, beginning with the place of the decimal point.
2. Find the greatest number whose square is contained in the period at the left. This will be the first figure of the root. Subtract the square of this figure from that period, and to the remainder annex the second period to form a dividend.
3. Divide the dividend by twice the first figure of the root, regarded as tens; annex the quotient to the first figure of the root, and also to the divisor; then multiply the divisor thus completed by the second figure of the root, and subtract the product from the dividend.
4. If there are more periods to be brought down, proceed as before, using the part of the root already found in the same way as the first figure in the previous process.
II. To find the square root of a common fraction when both terms are perfect squares.

Extract the square root of the numerator and of the denominator for the terms of the required root.

When the denominator is not a perfect square, reduce the fraction to a decimal, and extract the square root.

Find the square root of
8. 225.
9. 289.
10. 576.
11. 1444.
12. 21025.
13. 173056 .
14. 998001.
15. $9 \% 8121$.
16. 295.06624.
1\%. . 14356521.
18. 2.36144689.
19. 2950.6624.

Find the square root of

20.	23.	26		.
21. 1.6.	24. 1.0404.	5.0	$\overline{41}^{\text {2 }}$	
22. .016.	25.	021.	29. 173.	32. 3^{4}

33. A square field contains 1960000 sq . ft . What is the length of one side?
34. Find the side of a square field equal in area to a rectangular field 2800 yards long and 700 yards wide.
35. A piece of zinc contains 3600 square inches, and its length is 4 times its breadth. What are its dimensions?
36. A square field contains 1 A .22 P . ${ }^{7} \frac{9}{16} \mathrm{sq} . \mathrm{yd}$. Find the length of one side.
37. How much more will it cost to enclose with a fence, 160 A . of land, at $\$ 4 \frac{1}{2}$ a rod, if in the form of a rectangle 320 rd . long and 80 rd . wide, than if in square form?

38. Principles. I. The cube of a number has three times as many figures as that number, or three times as mony, less one, or two. Thus,

3^{3}	$=27$,	10^{3}	$=1000$,
9^{3}	$=729$,	100^{3}	$=1000000$,
99^{3}	$=970299$,	1000^{3}	$=1000000000$,
		2.5^{3}	$=.125$,

Hence,

II. If any perfect cube be separated inio periods of three figures cach, leginning at the place of the decimal point, the number of periods will be equal to the number of figures in the cube root of that number.

If the number is integral and not a perfect cube, the number of periods will be equal to the number of figures in the entire part of the root.

Written ExERCISES.

54.5. To find the cube root of a umber.

1. Find the cube root of 658503 .

operation.	
$t^{3}+3 \times t^{2} \times u+3 \times t \times u^{2}+u^{3}=$	$658,503(80+7=87$
$t^{3}=80^{3}=$	512000
$3 \times t^{2} \times u+3 \times t \times u^{2}+u^{3}=$	146503
$3 \times t^{2}=3 \times 80^{2}=19200$	
$3 \times t \times u=3 \times 80 \times 7=1680$	
$u^{2}={ }^{2}{ }^{2} \quad=49$	
$3 \times t^{2}+3 \times t \times u+u^{2}=20929$	
$3 \times t^{2} \times u+3 \times t \times u^{2}+u^{3}=20929 \times 7$	146503

Explanation.-Since 658503 has two periods, its cube root has two figures. Since the cube of tens contains no significant figure of a lower order than thousands, 503 cannot be a part of the cube of the tens of the root. Hence, the tens of the root must be found from the first period 658. The greatest number of tens whose cube is contained in 658 is 8 . Subtracting the cube of S tens from 658503 , the remainder is 146503 . This remainder is composed of three times the square of the tens of the root multiplied by the units, three times the tens multiplied by the square of the units, and the cube of the units (537). Hence, if 146503 be divided by three times the square of the tens of the root, that is, by 19200 , the quotient 7 will be either equal to the units' figure of the ront, or greater. Subtracting $3 \times 80^{2} \times 7+3 \times 80$ $\times 7^{2}+7^{3}$; or $\left(3 \times 80^{2}+3 \times 80 \times 7+72\right) \times 7$ from 146503 , nothing remains. Hence, 87 is the required root.

In this example, 19200 is the partial or trial divisor, and 20929 is the complete divisor.

Geometrical Illustration.

Fig. 1.

Fig. 2.

Let Fig. 1 represent a cube whose volume is 658503 cubic feet. The volume of a cube is equal to the cube of one of its edges; hence, an edge may be found by extracting the cube root of its volume. The cube root of 658503 lies between 80 and 90 ; it is therefore 8 tens plus an unknown number of units. If the cubs whose edge is 80 feet and volume 512000 cubic feet be taken from Fig. 1, the remainder, Fig. 2, will contain 146503 cubic feet. This remainder consists of solids like those marked B, C, and D, in Fig. 2 and Fig. 3, Art. 537.

If the volume and the area of the base of a rectangular solid are known, the height, or thickness, may be found by dividing the volume by the area of the base. Now the three equal rectangular solids, each of which is 20 feet square, contain the greater part of the 146503 cubic feet ; hence, 3×80^{2}, or 19200 , may be used as a trial divisor, to find the thickness. Dividing 146503 by 19200 , the quotient is 7. This quotient may be too great. To test it, find the volume of Fig. 2, considering 7 feet as the thickness. Thus, $3 \times 80^{2} \times 7+3 \times 80$ $\times{ }^{7}{ }^{2}+7^{3}=146503$. Hence, 7 feet is the true thickness.
2. Find the cube root of 95443993 .

operation.

Explanation.-The partial divisor at each step is found by squaring that part of the root already found and multipiying by 3 .
$31443 \div 4800$ gives 6 as the nearest quotient ; but 6 will be found to be too large ; try 5.
3. Find the cube root of 48228.544 .

Explanation.Begin at the decimal point, and proceed both toward the right and left to separate into periods ; then proceed as in the extraction of the cube root of integers. The number of decimal places in the root is equal to the number of decimal periods in OPERATION.

$3^{3}=$	$\begin{aligned} & 48,228.544 \text { (} 36.4 \\ & 27 \end{aligned}$
$3 \times 30^{2}=2 \% 00$	21228
$3 \times 30 \times 6=540$	
$6^{2}=36$	
3276	19656
$3 \times 360^{2}=388800$	$15 \% 2544$
$3 \times 360 \times 4=4320$	
$4^{2}=\quad 16$	
393136	1572544

4. Find the cube root of $\frac{1}{3} 25$.

Explanation.-The cube root of a OPERATION. fraction is equal to the cube root of the numerator divided by the cube root of the denominator.

$$
\sqrt[3]{\frac{125}{34 \overline{3}}}=\frac{\sqrt[3]{125}}{\sqrt[3]{343}}=\frac{5}{7^{0}}
$$

5. Find the cube root of 85184 . Of 9.261 .
6. Find the cube root of $85 \% 3 \% 5$. Of 405.224 .
\%. Find the cube root of $\frac{4}{9} \frac{13}{261}$. Of $\frac{1124864}{1331000}$.

Rules.

I. To find the cube root of an integer, or of a number containing a decimal.

1. Separate thie given number into periods of three figures each, beginning with the place of the decimal point.
2. Find the greatest number the cube of which is contained in the period at the left. This will be the first figure of the root. Subtract the cube of this figure from that period, and to the remainder annex the second period to form a dividend
3. Divide this dividend by the trial divisor, which is three times the square of the first figure of the root regarded as tens, and write the quotient as the second figure of the root. To the trial divisor add three times the product of the second figure of the root by the first, considered as tens, and the square of the second figure. The result will be the complete divisor. Multiply the complete divisor by the second figure of the root, and subtract the product from the clividend.
4. If there are more periods to be brought down, proceed as before, using the part of the root already found in the same way as the first figure in the previous process.
II. To find the cube root of a common fraction, when both terms are perfect cubes.

Extract the cube root of the numerator and of the denominator for the terms of the required root.

When the denominator of the given fraction is not a perfect cube, reduce the fraction to a decimal and extract the cube root.

Find the cube root of

8. 110592.	12. 17173512.	16. 32.461759.
9. 300763 .	13. 2596940% \%.	17. .000912673.
10. 2406104.	14. $9268593 \% 5$.	18. . 001906624.
11. 69426531.	15. $21936532 \% \% 91$.	19. . 000024389.

Find the cube root of

20. 3.	23. $\frac{8}{27}$.	26. $405 \frac{28}{125}$.	29. $\frac{23}{729}$.
21. . 3.	24. $\frac{250}{863}$.	2\%. ${ }^{17} 1$.	30. $38 \frac{2}{3} \frac{2}{1}$.
22. . 03.	25. 44.6.	28. $\frac{125.728}{1638}$	31. 32.65^{2}

Find the second member in the following equations:
32. $\sqrt[3]{2.5^{5}}-\sqrt[3]{1.44}=$? $\sqrt[3]{\frac{133}{3376}} \times \sqrt[3]{\frac{259}{1024}}=$?

$$
2^{7^{\frac{1}{3}}}+(103.823)^{\frac{1}{3}} \times(.125)^{\frac{1}{3}}=?
$$

33. $\sqrt{16^{6}} \div \sqrt[3]{125}=$? $\sqrt[3]{(4096)^{\frac{1}{2}}} \times \sqrt[3]{\frac{3375}{8000}} \div \sqrt[3]{.5^{3}}=$?
34. What is the length of an edge of a cubical box that contains 50653 cubic feet?

The volume of a cube is equal to the cube of one of its edges; hence, an edge is equal to the cube root of the volume.
35. Find the entire surface of a cube whose volume is $37 \mathrm{cu} . \mathrm{ft}$. and $64 \mathrm{cu} . \mathrm{in}$.
36. The edge of a cube is 2 ft . long; find the length of an edge of another cube containing 3 times as much volụme.

3\%. A cubical box contains 9261 cubic inches. How many square inches in one of its faces?
38. Find an edge of a cube of marble which contains 32768 cubic inches.
39. If 108 cords of wood be piled in the form of a regular cube, what will be the length of one of its edges ?
40. What is the area of the bottom of a cubical cistern whose capacity is 110592 cubic inches?

ROOTS OF HIGHER DEGREES.

546. Any root, the index of which contains the factors 2 and 3 , and no other prime factors, may be extracted by means of the square and cube roots.

If any power of a number be raised to any required power, the result will be that power of the given number denoted by the product of the exponents. Thus, $\left(2^{3}\right)^{3}$ $=2^{3} \times 2^{3}=2^{6}$ (533, Prin.).

Hence, if two or more roots of a number be extracted successively, the result will be that root of the given number denoted by the product of the indices.

WRITTEN EXERCISES.

54\%. 1. Find the 6th root of 2985984.

Explanation.-The index of the required root is 6 , or 2×3; hence, find the square root of the given number, and then the cube root of the result ; or, find the cube root of the number, and the square root of the result.

$$
\begin{aligned}
& \text { OPERATION. } \\
& \sqrt{2985984}=1728 \\
& \sqrt[3]{1728}=12 \\
& \text { Or, } \\
& \sqrt[3]{2985984}=144 \\
& \sqrt{144}=12
\end{aligned}
$$

Rule. Extract, in succession, the roots indicated by the prime factors of the given index; the final result will be the root sought.
2. Find the 4th root of 1296 .
3. Find the 6 th root of 2176782336 .
4. Find the 8 th root of $10995.11627 \% 76$.
5. Find the 9 th root of $512 \times 512 \times 512$.

548. The following examples cover nearly all the practical and important subjects taught in arithmetic, and are designed to test the pupil's knowledge of the principles and processes presented in the preceding pages of this work, and his ability to solve readily the more difficult problems.

The pupil should be required to state briefly, and with clearness and accuracy, so far as the nature of the question will permit, what is given and what is required in each question, the relation of what is given to what is sought, and the steps and processes necessary to obtain the answer.

1. What is the cost of digging a cellar 45 ft . long, 28 ft . wide, and 8 it .6 in . deep, at $\$.42$ a cubic yard?
2. If a town 5 miles square is divided into 150 farms of equal size, what is the area of each farm?
3. How many bushels of wheat will fill a bin 20 ft . long, 12 ft . wide, and 5 ft . deep?
4. Bought R. R. stock at 7% discount, the par value of which was $\$ 5200$, and sold the same at $103 \frac{1}{2}$. What was the whole gain?
5. A man sold 320 A . of land, which was 20% of 75% of his whole farm. How many acres had he left?
6. A flour merchant had 1000 bbl . of flour insured for 80% of their cost, at 34%, paying $\$ 214.50$ premium. At what price per barrel must he sell the flour, to gain 20% on the entire cost?
7. A cistern has 4. pipes; the first can fill it in 20 minutes, the second in 30 minutes, the third in 40 minutes, and the fourth can empty it in 1 hour. If these pipes are all opened at 2 o'clock P. M., the cistern being empty, at what time will it be filled?
8. How many barrelis of water, of $31 \frac{1}{2}$ gal. each, will fill a tank 13 ft . long, 10 ft . wide and 10 ft . deep?

9 . What will be the expense of plastering a room 40 ft . long, $36 \frac{1}{2} \mathrm{ft}$. wide, and $22 \frac{1}{4} \mathrm{ft}$. high, at $\$.36 \mathrm{a}$ sq. yard, allowing $13 \% 5$ sq. ft. for doors, windows, etc.?
10. How many shares of bank stock, bought at $110 \frac{1}{2}$, and sold at $116 \frac{3}{4}$, brokerage $\frac{1}{8} \%$ each way, will gain $\$ 1200$?
11. What decimal part of 1 acre is a piece of land 121 yd . long, and 75 ft . wide?
12. A merchant marked a piece of goods 25% above cost, but anxious to effect a sale, sold it at a discount of 20% from the marked price, supposing le should still gain 5%. Did he gain or lose?
13. Three hundred seventy-five thousandths of the lumber in a yard was destroyed by fire. If the entire lot was worth $\$ 10000$, what was the loss of a firm that owned . 12 of it?
14. Reduce $\left(\frac{1 \frac{3}{4}}{4 \frac{1}{2}} \div \frac{2 \frac{1}{3}}{2 \frac{1}{4}}\right) \times \frac{4}{3}$ of $\frac{1}{2}$, to a decimal.
15. Bought a quantity of coffee at 20 cts. a pound. Allowing a loss of 5% in weighing it out, and 10% of the sales for bad debts, at what price per pound must it be sold, to gain 14% on the cost?
16. What will 20 yards of cloth cost in U. S. money, if $4 \frac{1}{2} \mathrm{yd}$. cost $£ 68 \mathrm{~s} .10 \mathrm{~d}$. sterling?
17. Reduce $.8 \dot{3}, .90 \dot{0} \dot{9}, .47 \dot{\%}^{2}$, and $.14285^{\dot{\%}}$ to equivalent common fractions, and find their sum.
18. For what sum must a note be drawn at 60 da., to net $\$ 2500$, if discounted at 6% ?
19. At what price must books, bought at 10 and 5% off from $\$ 1$ per copy, and on 4 mo. time, be sold for cash, to make a profit of 20%, money being worth 6% ?
20. If 46 lb . of tea are worth 184 lb . of coffee, how many pounds of tea are worth 126 lb . of coffee?
21. What length must be cut from a plank $3 \frac{1}{2} \mathrm{in}$. thick, and $6 \frac{1}{4} \mathrm{in}$. wide, to contain $37 \frac{1}{2} \mathrm{ft}$. board measure ?
22. How must damaged flour, that cost $\$ 6.80$ a barrel, be marked, so that 20% may be abated, and sell at cost ?
23. If a road of uniform grade rises 462 ft . in $1 \frac{1}{2} \mathrm{mi}$., how much does it rise in 100 ft .?
24. What must be the asking price for tea that cost $\$.56$ a pound, in order to abate 10%, and still make a profit of 20% ?
25. If a house worth $\$ 12500$ rents for $\$ 937.50$ per annum, what per cent of the value of the house is the rent?
26. What amount must be paid for insuring a vessel worth $\$ 24500$, to save the premium in case of loss, the rate of insurance being $4 \frac{1}{2} \%$?
27. If it take $3 \frac{1}{2} y d$. of stuff, of a certain width, to line $23_{4} \mathrm{yd}$. of another breadth, what quantity of the latter will be required to line $24 \frac{1}{2} \mathrm{yd}$. of the former?
28. At 6 cts. a foot, board measure, what is the cost of 6 pieces of sawed timber, each measuring 24 ft . long, 1 ft . 8 in. wide, and 10 in. thick?
29. An agent in London bought a quantity of wine, amounting to $£ 165015 \mathrm{~s}$. 6 d . What was his commission in U. S. money, at $2 \frac{1}{2} \%$?
30. Three adjacent tracts of land, containing respectively; 362 A. 100 P., 464 A. 120 P., and 484 A. 56 P., are divided into 24 lots of equal size. How much does each lot contain?
31. How many rods of fencing will be required to enclose 44 A. 16 P. in a square form?
32. I hold a bond dated May 1, 1876, for $\$ 1300$, bearing interest at 6%, payable annually, but the interest remains unpaid. What amount is due May 1, 1882 ?
33. How many men can do a piece of work in 84 da., that 54 men can do in 126 days?
34. Find the side of a square field, the area of which is 48 A. 10 P. $22 \frac{1}{2}$ sq. yd. 4 sq. ft.
35. If I buy goods for $\$ 1500$ cash, how large a note payable in 60 da., at $\% \%$ bank discount, must I make, that the proceeds shall pay for the goods?
36. What is the entire surface of a cube, the contents of which are $428 \% 5$ cubic feet?
3%. If goods are marked at two prices, one for cash and the other on 6 mo . credit, what ratio ought the prices to bear to each other, money being worth 6% per annum simple interest?
38. A bond for $\$ 500$, dated May 1, 18\%\%, bearing interest at 6%, has the following indorsements upon it: May 1, 18\%8, \$100; May 1, 1879, \$50; June 10, 1880, \$20; Aug. 1, 1880, \$250. What amount is due on the bond May 1, 1881?
39. How many acres of land in a farm $\frac{1}{3}$ of a mile long, and $\frac{2}{7}$ of a mile wide?
40. If a rent of $\$ 400$, payable annually, remains unpaid, what will be due the landlord at the end of 4 years, allowing compound interest at 6% ?
41. What is the face of a bill of exchange on London, in sterling, that costs $\$ 880$, premium 10% ?
42. A can do a piece of work in 9 da., which B can do in 12 da., and C. in 18 da. In what time can the three do it, working together?
43. What will it cost to enclose a garden that is $12 \frac{2}{3}$ rods long, and $9 \frac{1}{4}$ rods wide, with a stone wall 4 ft . high, and $3 \frac{1}{2} \mathrm{ft}$. thick, at $\$.62 \frac{1}{2}$ a perch ?
44. What sum invested in bank stock, at par, paying 8% annually, will yield a quarterly dividend of $\$ 450$?
45. Which is the cheaper, a suit of clothes that costs $\$ 48$ and will last 18 months, or a suit that costs $\$ 30$ and will last 10 months; and how much will a man save in 15 years, who wears the cheaper suit, interest not being reckoned?
46. A note for $\$ 324.61$ was paid at the end of 2 yr . 7 mo . 13 da., the amount bcing $\$ 384.131$. What was the rate \%?
47. A broker receives $\$ 5270$ to be invested in stock, after retaining 3% commission on the money paid out. How much moncy did he pay out, and how much did he retain for his commission?
48. A man, engaging in trade, added 20% to his capital the first year ; to his capital so increased he added 25% the second year; and the third year he added 28%. What per cent of the capital with which he commenced, was his capital at the cnd of the third year? If he commenced with $\$ 5000$, how much had he at the close of the third year?
49. A traveler on arriving at Columbia, Mo., found his watch, which indicated the correct time of the place from which he started, 1 hr .4 min . fast. How many degrees of longitude had he traveled over, and in what direction?
50. How large must a cubical bin be, to hold 500 bushels of wheat?
51. The taxable property in a town of 871 polls is $\$ 340 \% 160$. A tax of $\$ 33456.7 \%$ is to be raised. If a polltax of $\$ 1.25$ is levied, what should be the rate of tax ?
52. If a publisher sells to the jobber a book at 40% above the cost of manufacture, and the jobber sells to the retail merchant at 20% advance, who in turn makes 25% by selling it at $\$ 1$, what is the cost of manufacture ?
53. Bought a bill of exchange on Paris for 6500 francs, at 5.22 , $\frac{1}{4} \%$ brokerage. What did it cost in U. S. money?
54. A mason wishes to make a cubical cistern that shall contain 250 barrels of water. What must be the length of its edges?
55. What must be paid for paving a court 50 ft .6 in . by 36 ft ., at $\$.30$ a square yard?
56. What is the cost of 500 boards, one-half of them $\cdot 12 \mathrm{ft} .6 \mathrm{in}$. long, and 10 in . wide, the other half 13 ft . long and 9 in . wide, at $\$ 3$ per C., board measure?

5\%. Bought goods of A. S. Barnes \& Co., amounting to $\$ 728.50$, for which I pay $\frac{2}{5}$ cash, and give a 4 mo. note, with interest at 6% added, for the remainder. What is the face of the note?
58. Imported from Havre 160 baskets of Champagne, 12 bottles each, 5% breakage, duty 40%, freight and other charges $\$ 134.40$, the whole cost being $\$ 1459.20$. What did it cost per bottle in Havre, what in store, and what must it be sold for. per bottle to clear 35% ?
59. Wm. Gallup \& Co. bought goods of Peake \& Co. as follows : July 1, $\$ 150$, at 3 mo. ; July 20, $\$ 200$, at 4 mo ; Aug. 16, $\$ 300$, at 2 mo. ; and Oct. $4, \$ 250$, at 4 mo . Find the equated time of payment, and what would be due on the account March 15 following, if nothing had been paid, at 6% interest?
60. In what time will $\$ 800$, at 6% simple interest, yield an amount equal to itself?
61. If, on a note made for $\$ 700$, bearing interest at 6%, and dated Jan. 1, 1881, $\$ 50$ is paid on the first of every month, commencing Feb. 1, following the date, what is due Jan. 1, 1882?
62. A man hired a house for $\$ 500$ a year, payable in quarterly payments at the end of the quarter, but he wishes to pay the whole at the commencement of the year, discount being at the rate of 6% per annum. What must he pay?
63. A starts on a journey at the rate of $3 \frac{1}{2}$ miles an hour ; B follows in $1 \frac{1}{2}$ hours at the rate of 4 miles an hour. How far must B travel to overtake A?
64. A regiment of 745 men is to be clothed, each suit to contain $3 \frac{1}{2} \mathrm{yd}$. of cloth, $1 \frac{3}{8} \mathrm{yd}$. wide, and lined with serge, $\frac{7}{8} \mathrm{yd}$. wide. How many yards of serge will be required?
$\$ 1824 \frac{60}{100}$

65.

For value received, eighteen months after date, I promise to pay to the order of M. R. Barnard, Eighteen hundred twenty-four $\frac{60}{100}$ dollars, with interest at 10 per cent.

> J. E. Bowen.

Discounted June 24, 1882, at $1 \frac{1}{4} \%$ a month.
Find the date of maturity, term of discount, and proceeds.
66. Bought 50 yards of broadcloth, at $\$ 2.25$ a yard, and a certain number of yards of flannel. The cost of both was $\$ 169.20$, and for every 5 yards of broadcloth there were 9 yards of flannel. How many yards of flannel were bought, and at what price per yard?

67 . At $\$ 1.87 \frac{1}{2}$ a bushel, what is the value of the wheat filling a bin $9 \frac{1}{2} \mathrm{ft}$. long, 6 ft . wide, and 4 ft .3 in . deep?
68. What will be the cost of raising the surface of a half acre of ground 9 inches, at $\$.75$ per cubic yard?
69.

Horace P. Griffin.
Dr. \qquad $C r$.

1880.			1880.		
Jan. 4	To Mdse.@4mo.	\$375.25	July 4	By Cash. .	\$300
Feb. 19	"	420.60	Aug. 14	" 6	300
May 4	" "	372.50	Sept. 4	Note,2 mo.	300

Find the cash balance on this account on July 4, 1882, allowing interest at 7\%.
70. Compare the amounts of a $\$ 5008 \%$ note, running 4 years, at simple interest, at annual interest unpaid, and at compound interest.
71. If a manufacturer sells to a jobber-at 15% profit, and the jobber sells to the retailer at 20% profit, and the retailer sells to the consumer at a profit of 25%, what part of the price paid by the consumer is profit?
72. A man harvested 72 bushels of wheat, which was only ${ }_{5}^{3}$ more than he sowed. How much did he sow?
73. Smith owes Jones four several amounts as follows : $\$ 264.50$, due in 60 days; $\$ 374.25$, due in 75 da.; $\$ 375.60$, due in 80 da .; and $\$ 120.50$, due in 90 da. Find the average term of credit, and the equated time of payment from April 12.
74. A wheel 15 ft . in circumference revolves 600 times in going over a certain distance. What is the distance?
75. A mechanic worked 1 yr. 5 mo. for a monthly salary of $\$ 75$, payable at the end of the month, but remaining unpaid until the end of his service. What amount is he entitled to receive, allowing simple interest at r\% per annum?
76. A man bought 75 shares of bank stock at $98 \frac{1}{2}$. He held it for 3 yr .6 mo ., receiving a semi-annual dividend of 4% on the same, when he sold it at 105 . Money being worth 6% simple interest, what was his gain?
77. James Webb purchased goods of Davis, Banks \& Co. to the amount of $\$ 4000 ; \$ 1000$ payable April 2, $\$ 1200$ payable May 5, $\$ 750$ payable June 15, and the remainder June 30. At what date must a note for the full amount be drawn, payable in 3 months, to fall due at the average date?
78. Three men undertake a job for $\$ 750$. The first furnishes 5 men 9 da.; the second, 6 men 8 da.; and the third 12 men 3 da. What share of the money is each entitled to receive?
79. I sold $\frac{1}{2}$ of a lot of land for $\frac{3}{4}$ of the cost of the lot, then sold the remaining half for $\frac{1}{2}$ of what I received for the first part. What per cent did I gain on the whole debt?
80. I hold three notes against Amos Dix, as follows: One dated Oct. 10 , for $\$ 200$, at 2 mo .; another dated Nov 10 , for $\$ 250$, at 3 mo ; and the other dated Dec. 10, for $\$ 200$, at $3 \mathrm{mo} . ;$ Jan. 10 he paid $\$ 300$. From what date should interest be reckoned on the remainder?
81. A dealer paid $\$ 364$ for 40 bbl . of flour, giving $\$ 10$ for first quality, and $\$ 7$ for second quality. How many barrels were there of each?
82. When cotton is quoted in New Orleans at 16 cts. a pound, what should it be worth in Liverpool, exchange being quoted at $4.87 \frac{1}{2}$, and freight $1 \frac{1}{4}$ cents a pound?
83. Jan. 1, 1881, three men form a partnership for 1 year, each furnishing $\$ 2000$ capital. May 1, A puts in $\$ 1000$ more ; June 1, B puts in $\$ 1500$, and C draws out $\$ 500$; Oct. 1, A withdraws $\$ 500$, and B and C put in $\$ 1000$ each. Having gained $\$ 4000$, at the close of the year the partnership is dissolved. What is each partner's share of the gain?
84. How many tons of water will a cistern contain that is 8 ft . 8 in . long, 6 ft .4 in . wide, and 6 ft .9 in . deep, allowing a cubic foot of water to weigh 1000 oz .?
85. R. B. Maddex held a bond against John Walker, dated May 1, 187%, for $\$ 1500$, bearing interest at 6%. Pay ments were made on this bond as follows:

June $1,1878, \$ 59 \% .50$.	May $1,1880, \$ 100$.
July $1,1879, \$ 265$.	July 11, 1881, $\$ 400$.
Nov. $10,1879, \$ 25$.	

What was due Dec. 26, 1882 ?
86. What must be the length of an edge of a cubical cistern that will contain 4913 cubic feet?
87. What principal must be loaned May 1, at 8%, to be repaid by 4 installments of $\$ 2000$ each, payable on the first day of the four succeeding months?
88. From a piece of ground 25 rd . long and 15 rd . wide, a lot 25 ft . by 100 ft . was sold for $\$ 300$. What is the value of the remainder at the same rate?
89.
$\$ 756$.
St. Louis, Jan. 1, 1880.
One year after date, I promise to pay to the order of Chas. Tuthil, seven hundred fifty-six dollars, with six per cent interest, for value received.

Charles Gay.
Indorsed as follows : April 1, 1880, \$12 ; July 1, 1880, $\$ 30$; Nov. 1, 1880, \$325. Find the amount due Jan. 1, 1881, first by the mercantile rule (446); next by accurate interest (424) ; and then by U. S. Rule (444), allowing 360 days to the year.
90. Divide $\$ 1260$ among 3 persons, so that the second shall have $\frac{3}{4}$ as much as the first, and the third $\frac{1}{2}$ as much as the other two together.
91. If 10 men can build a wall in $7 \frac{1}{2}$ da., and 4 of them are absent at first $2 \frac{1}{2}$ days, how many more men must they bring with them to complete the work in the same time?
92. How many boards of the longest possible equal length will enclose a rectangular field 9893 ft . long, and 8047 ft . wide, with a straight fence 6 boards high ?
93. Bought a bill of goods, for which I paid $\frac{2}{5}$ cash, and gave my note at 4 mo. with 6 per cent. interest added, for the remainder. The face of the note was $\$ 1689.12$; what was the amount of the bill?
94. Which is the better investment, railroad stock paying an annual dividend of 6%, bought at a discount of 25%, or money loaned at 10%, payable annually? What per cent. better?

2DEFFIIFIONSC

549. A Progression consists of a collection of numbers arranged in the order of their magnitudes, each of which is greater or less than the preceding one, either by a constant difference, or in a constant ratio.

Thus, $1, \quad 3,5,7, \quad 9,11,13,15$, is a progression in which each number exceeds the preceding one by 2 , and

$$
1, \quad 3, \quad 9, \quad 27, \quad 81, \quad 243, \quad 729,
$$

ǐs a progression in which each number is three times the preceding one.
550. The Terms of a progression are the numbers of which it consists.
551. The Extremes of a progression are the first and last terms ; the other terms are the Means.
552. An Increasing Progression is a progression in which each term is greater than the preceding one.

Thus, $2,4,6,8,10,12$, is an increasing progression.
553. A Decreasing Progression is a progression in which each term is less than the preceding one.

Thus, $11,9,7,5,3,1$, is a decreasing progression.
554. An Arithmetical Progression is a piugression in which the difference between any two consecutive terms is constant, and this constant difference is called the Common Difference.

Thus, $1,4.7,10,13,16$, is an arithmetical progression, whose common difference is 3 .

The initials A. P. are used for Arithmetical Progression.
555. A Geometrical Progression is a progression in which the ratio of any term to the preceding term is constant, and this constant ratio is called The Ratio of the progression.

Thus, $1,3,9,27,81,243$, is a geometrical progression whose ratio is 3 .

The initials G. P. are used for Geometrical Progression.

Written Exercises.
556. To find one of the extremes of an A. P., when the other extreme, the common difference, and the number of termes are given.

1. Find the last term of an increasing A. P., the first term of which is 3 , the common difference 2 , and the number of terms \%.

Explanation.-The second term is $3+2$; the third term is $3+2+2$, or $3+2 \times 2$; the fourth

OPERATION.
$3+6 \times 2=15$ term is $3+2+2+2$, or $3+3 \times 2$; 'and so on ; hence, the seventh or last term is $3+6 \times 2$, or 15 .
2. Find the first term of an increasing A. p., the last term of which is 15 , the common difference 2 , and the number of terms \%.

Explanation. - It follows, from the 1st example, that the 1 st term must be a number,
operation.
$15-6 \times 2=3$ to which if 6×2 be $a d d 6 d$, the sum will be 15 ; hence, if 6×2 be subtracted from 15 , the remainder 3 will be the 1 st term
3. Find the last term of a decreasing a. P., the first. term of which is 1%, the common difference 2 , and the number of terms 9 .

Explanation.-The second term is 17-2; operation. the third term is $17-2 \times 2$; the fourth term is $\quad 17-8 \times 2=1$ $17-3 \times 2$; and so on; hence, the ninth or last term is $17-8 \times 2$, or 1 .
4. Find the first term of a decreasing A. P., the last term of which is 1 , the common difference 2 , and the number of terms 9 .

Explanation.-It follows, from the 3 d ex- operation. ample, that the 1 st term must be a number, $\quad 1+8 \times 2=1 \%$ from which if 8×2 be subtracted, the remainder will be 1 ; hence, if 8×2 be $a d d e d$ to 1 , the sum 17 will be the 1 st term

Formelas:

1. Last term $=$ First term + No. of terms
less $1 \times$ Common Difference.
2. First term $=$ Last term - No. of terms less $1 \times$ Common Difference.

In
Increasing
A. P.
3. Last term $=$ First term - No. of terms less $1 \times$ Common Difference.
4. First term $=$ Last term + No. of terms
less $1 \times$ Common Difference.
5. Find the last term of an increasing A. P., in which the first term is 5 , the com. diff. 4 , and the number of terms 10 .
6. Find the 50 th term of an increasing A. P., in which the first term is 2 , and the common difference 3 ,
\%. Find the 32d term of a decreasing A. p., in which the first term is 100 , and the common difference 3 .
8. Find the last term of an increasing A. p., in which the first term is $\frac{3}{4}$, the com. diff. $\frac{3}{8}$, and the number of terms 25 .

55\%. To find the common difference, when the exfremes and the mumber of terms are given.

1. The extremes of an A.P. are 15 and 3 , and the number of terms 7 ; what is the common difference?

Explanation. - The difference between the extremes is equal to the $(15-3) \div(7-1)=2$. product of the common difference by the number of terms less 1 (5.56 , Form. 1) ; hence, the common difference is equal to $(15-3) \div 6=2$.

Formula: Common Difference $=\frac{\text { Diff. of Extremes }}{\text { No. of terms less 1 }}$.
2. Find the common difference in an A. P. of 8 terms, whose extremes are 3 and 18.
3. The extremes of an A.P. are 1 and 51 , and the number of terms 26 ; what is the common difference?
4. The extremes are 0 and $2 \frac{1}{2}$, and the number of terms is 18 ; what is the common difference?
558. To find the sum of the terms of an A. P., when the extremes and the number of terms are given.

1. The extremes of an A.P. are 5 and 20 , and the number of terms 6 ; what is the sum of the terms?

OPERATION.

Sum $=5+8+11+14+17+20 ;$
Sum $=20+17+14+11+8+5 ;$
Sum $\times 2=25+25+25+25+25+25 ;$
Sum $\times 2=(5+20) \times 6 ;$
Sum $=(5+20) \times \frac{6}{2}=75$.

Explanation...-The common difference is 3 ($\mathbf{5 5 7}$); hence, the sum $=5+8+11$, etc., or the sum $=20+17+14$, etc. Adding the corresponding terms of these two progressions, we have the sum $\times 2=25 \times 6=(5+20) \times 6$; hence, the sum $=(5+20) \times \frac{6}{2}=75$, the sum of the terms.

Eormula Sum $=$ Sum of Extremes $\times \frac{1}{2}$ the No. of terms.
2. The extremes of an A.P. are 8 and 80 , and the number of terms ${ }^{7}$; what is the sum of the terms?
3. The extremes of an A. P. are 2 and 2000 , and the number of terms 1000 ; what is the sum of the terms?
4. A man traveled 14 miles the first day, 18 the second, 22 the third, and so on; how far did he travel in 12 days?

559. To find one of the extremes of a G. P., when the other extreme, the ratio, and the number of terms are given.

1. The first term of a G.P. is 3 , the ratio 2 , and the number of terms 10 ; what is the last term?

Explanation.-The second term is 3×2; operation. the third term is $3 \times 2 \times 2$, or 3×2^{2}; the fourth $3 \times 2^{9}=1536$. term is $3 \times 2^{2} \times 2$, or 3×2^{3}; and so on; hence, the tenth term is 3×2^{9}, or 1536 .
2. The last term of a G. p. is 1536 , the ratio 2 , and the number of terms 10 ; what is the first term?

Explanation.-It follows, from the first ex- operation. ample, that the first term must be a number by $1536 \div 2^{9}=3$. which, if 2^{9} be multiplied, the product will be 1536 ; hence, if 1536 be divided by 2^{9}, the quotient 3 will be the first term.

Formulas:

1. Last term $=$ First term \times Ratio raised to the power whose exponent is the No. of terms less 1.
2. First term $=$ Last term \div Ratio raised to the power whose exponent is the No. of terms less 1.
3. The first term of a G. P. is ${ }^{7}$, and the ratio 4 ; what is the 8th term?
4. The first term of a G. P. is 1024 , and the ratio $\frac{1}{4}$; what is the 10th term?
5. The last term of a G. P. is 192 , the ratio 2 , and the number of terms 9 ; what is the first term?
6. A man traveled 2 miles the first day, 4 miles the second, 8 miles the third, and so on; how far did he travel on the " 7 th day?
\%. Find the amount of $\$ 500$ for 10 years, at 10%, compound interest.

The first term is $\$ 500$, the ratio 1.10 , and the number of terms 11 .
560. To find the sum of the terms of a G. P., when the extremes and ratio are given.

1. The extremes of a G. P. are 3 and 192, and the ratio 4 ; what is the sum of the terms?
operation.

$$
\begin{aligned}
\text { Sum } \times 4 & =3 \times 4+12 \times 4+48 \times 4+192 \times 4 ; \\
\text { Sum } & =2: 12+48+192 ; \\
\text { Sum } \times 3 & =192 \times 4-3 ; \\
\operatorname{Sum} & =\frac{192 \times 4-3}{3}=255
\end{aligned}
$$

Explanation.-Subtracting the sum from the sum $\times 4$, the remain . dex is $192 \times 4-3$; hence, the sum of the terms $=\frac{192 \times 4-3}{3}=2.55$.
2. The extremes of a G. P. are $\frac{1}{2}$ and $\frac{1}{54}$, and the ratio $\frac{1}{3}$; what is the sum of the terms?

OPERATION.

$$
\begin{aligned}
\text { Sum } & =\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{84} ; \\
\text { Sum } \times \frac{1}{3} & =\frac{1}{2} \times \frac{1}{3}+\frac{1}{6} \times \frac{1}{3}+\frac{1}{18} \times \frac{1}{3}+\frac{1}{84} \times \frac{1}{3} ; \\
\text { Sum } \times \frac{4}{3} & =\frac{1}{2}-\frac{1}{84} \times \frac{1}{3} ; \\
\text { Sum } & =\left(\frac{1}{2}-\frac{1}{54} \times \frac{1}{3}\right) \div \frac{2}{3}=\frac{20}{27} .
\end{aligned}
$$

Explanation.-Subtracting the sum $\times \frac{1}{3}$ from the sum, the remainder is $\frac{1}{3}-\frac{1}{84} \times \frac{1}{8}$; hence, the sum of the terms $=\left(\frac{1}{2}-\frac{1}{64} \times \frac{1}{3}\right) \div \frac{2}{3}=\frac{20}{20}$.

Formula: \quad Sum $=$ Difference between 1st term and product of the last term by the ratio \div Difference between the ratio and 1.
3. The extremes of a G. P. are 1 and 128, and the ratio 2; what is the sum of the terms?
4. The extremes of a G. P. are $2 \frac{2}{5}$ and $\frac{4}{405}$, and the ratio $\frac{1}{3}$; what is the sum of the terms?
5. Find the sum of the first 10 terms of the progression $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$, etc.
6. The first term of a G. P. is 5 , the ratio 2 , and the number of terms 8 ; what is the sum of the terms?
7. What is the sum of the first 7 terms of the progression $2,6,18$, etc.?
8. A man performed a journey in 7 days, traveling 5 mi . the first day, 10 mi . the second, 20 mi . the third, and so on ; what was the length of the journey?
9. If a man were to buy 20 mules, paying 1 cent for the Sirst, 3 cents for the second, 9 cents for the third, and so on; what would he pay for the whole?
10. A man agreed to labor 10 days upon the following terms : 1 mill for the first day, 1 cent for the second, 1 dime for the third, and so on in geometrical progressinn; what should he receive for his 10 days' labor?

2DEFINTTONSC

561. An Annuity is a sum of money payable at the end of any equal intervals of time.
562. A Certain Annuity is an annuity which continues for a stated time.
563. A Perpetual Annuity, or a Perpetuity, is an annuity which is to continue forever.

An annuity is said to be forborne, or in arrears, if the payments were not made when due.
564. The Amount, or Final Value, of an annuity is the sum of all the payments and the interest on them from the time they become due until the annuity ceases.
565. The Present Worth of an annuity is the sum of money which will, in the given time, and at the given rate per cent, amount to the final value of the annuity.

ANNUITIES AT SIMPLE INTEREST.

566. The formulas of Arithmetical Progression and of Simple Interest are applicable to problems in annuities at simple interest.

Written Exercises.

1. What is the amount of an annuity of $\$ 100$ a year, for 5 years, at $\% \%$ simple interest?

Explanation.-The 5th payment bears no interest, because it is not due till the end of the
operation.
$(\$ 100+\$ 128) \times \frac{5}{2}=\$ 5 \% 0$ 5th year ; the 4th payment bears interest 1 yr .; hence, the amount of this payment is $\$ 107$; the amount of the $3 d$ payment is $\$ 114$; and so on. These sums form an A. P in which the first term is the annuity, the common difference is the interest on the annuity for 1 yr ., and the number of terms is the number of years. The sum of the terms of this progression is $\$ 570$ (558).
2. What is the present worth of an annuity of $\$ 300$ a year, for 5 years, at 6%, simple interest?

Explanation.-The amount of the annuity is $\$ 1680$, and the present worth of this amount is $\$ 1292.30$ (452, Form. 1).

OPERATION.
$(\$ 300+\$ 372) \times \frac{5}{2}=\$ 1680 ;$ $\frac{\$ 1680}{1.30}=\$ 1292.30+$.
3. What is the amount of an annuity of $\$ 50$ a quarter, for $4 \frac{1}{2}$ years, at 2% per quarter?
4. What is the amount of an annuity of $\$ 1000$ a year, payable semi-annually, for 30 yr. , at 6% per annum, simple interest?
5. What is the present worth of an annuity of $\$ 500$ a year, for 10 years, at 10%, simple interest?
6. What is the present worth of a perpetuity of $\$ 600$ a year, money being worth 8%, simple interest?
\%. What is the amount of an annuity of \$1200 a year, payable monthly, for $16 \mathrm{yr} .$, at 5% per annum, simple interest?
8. An annuity of $\$ 500$ a year is in arrears for 10 years; what is the amount at 6%, simple interest?
9. A farm is rented for 20 years, at $\$ 500$ a year, payable annually. What is the present value of the rent, at 6% simple interest?

56\%. Alligation is a process of computation based upon the mixing of several ingredients of different values, so as to form a compound.

The term alligation, signifying binding, is used because in the calculation it is usual to link together the prices of different simples, according to a certain principle or rule.
568. Alligation Medial is the process of finding the value of each unit of a compound formed by mixing together simples, or ingredients of different values.
569. Alligation Alternate is the process of finding what proportion of several ingredients of different values are required to form a compound of a particular value.
$\mathbf{5 \%}$. The Mean Value is the average value of a unit of the compound.

Written Exercises.

5\%1. To find the mean value of a mixture consisting of several ingredients of clifferent values.

1. If a grocer mix 50 lb . of sugar worth 7 cts . a pound, with 30 lb . worth 8 cts ., and 40 lb . worth $9 \frac{1}{2} \mathrm{cts}$. , what is the value of the mixture prepared?

Explanation.-The values of the ingredients are respectively 350 cts ., 240 cts., and $380 \mathrm{cts}$. ; and the value of the whole compound of 120 lb . is 970 cts . Hence, 1 lb . is w^rth $\frac{1}{120} 0$ of 970 cts. , or $8_{12} \frac{1}{2}$ cts.

OPERATION.

$$
\begin{aligned}
50 \times 7 & =350 \\
30 \times 8 & =240 \\
40 \times 9 \frac{1}{2} & =380 \\
\overline{120} & \frac{970}{8 \frac{1}{12}} \text { cts. }
\end{aligned}
$$

Formula : Mean Value $=\frac{\text { Whole value of mixture }}{\text { Total quantity of ingredients }}$.
2. If 20 lb . of tea, worth 40 cts a pound, 30 lb . worth 60 cts., 40 lb . worth $32 \frac{1}{2}$ cts., and 60 lb . worth 38 cts., be mixed together, what will the mixture be worth a pound?
3. A miller mixes 25 bu . of wheat, at $\$ 1.20$, with 30 bu . at $\$.95$, and 40 bu . at $\$ 1.05$; and sells the whole at $\$ 1$ per bushel. What does he lose per bushel?
4. A person mixed 36 gal. of brandy at $\$ 2.40,24 \mathrm{gal}$. at $\$ 2.75$, and 30 gal. at $\$ 3.10$, with 35 gal. of water. What is the mixture worth per gallon?

5\%2. To find the proportional quantities of ingredieuts of different values required to form a mixture of a given mean value.

1. What proportion of teas, worth respectively $30,40,70$, and 90 cents a pound, must be mixed together to form a compound worth 50 cents a pound ?

OPERATION.

	$\left[30^{\cdots}\right.$	40	4	120	50	$\left\{\begin{array}{l}30 \cdots \\ 40 \cdots \\ \vdots \\ 70 \\ \\ 90 \ldots \\ \end{array}\right.$	20402010	2 60 4 160 2 140 1 90	
	40^{\cdots} !	20	2	80					
50	70...	10	1	70					
	90....	20	2	180					
			9	450				9	50
				50					50

Explanation.-By linking together any two prices of which one is greater and the other less than the mean value, we are enabled to ascertain how much of the one is needed to offset a certain quantity of the other; that is, the proportion of each required in the mixture.

Thus, if we take 1 lb . at 30 cts . we gain 20 cts . in a mixture sold at 50 cts ; and if we take 1 lb . at 90 cts ., we lose 40 cts ; hence, the quantities of these to be taken must be in the ratio of 40 to 20 , or 4 to 2 ; and in like manner, the quantities at 40 cents and 70 cts , must be as 20 to 10 , or 2 to 1 . Consequently, the quantities required will be as $4,2,1$, and 2 .

By linking 30 with $\% 0$, and 40 with 90 , the proportional quantities will be $70-50$, or 20 ; $50-30$, or 20 , for that couplet ; and $90-50$, or 40 ; and $50-40$, or 10 , for the other couplet ; or $20,40,20$, and 10 , which are to each other as $2,4,2,1$.

When it is necessary to link one price with two or more, the several differences between the latter, and the mean value, must be added together to find the quantity of that to which they are linked. The proof is by an application of the first case.
2. A farmer has sheep worth $\$ 3 \frac{1}{2}, \$ 5, \$ 6$, and $\$ 8$ a head. What number of each should he sell to obtain an average price of $\$ 5 \frac{1}{2}$ a head ?
3. What proportion of sugars, worth respectively ${ }^{7}$ cents, 9 cents, 10 cents, 15 cents, and 20 cents per pound, must a grocer mix to be able to sell the mixture at 12 cents a pound?
4. A dry goods merchant has muslins worth, respectively, 15 cts., 17 cts., 18 cts., 19 cts., and 20 cts. a yard. How many yards of each must he sell so as to realize an average price of $17 \frac{1}{2}$ cts. per yard ?

5\%\%. Connecticut Rule for Partial Payments.

If, at the time of a payment, a year's interest or more has accrued, and always in case of the last payment, follow the United States Rule.
If, at the time of payment, LESS than a year's interest has accrued, except it be the last payment, find the difference between the amount of the principal for an entire year, and the amount of the payment for the remainder of a year after it is made, and this difference will form the new principal.

If, at the time of payment, the interest accrued exceeds the payment, compute interest on the principal only.

5\%4. Vermont Rule for Partial Payments.

The Statutes of Vermont make the following provisions for computing interest on notes when partial payments have been made:

On all notes or other similar obligations, whether made payable on demand or at a specified time, with interest, when payments are made, such payments shall be applied:

1st. To liquidate the interest that has accrued at the time of such payments;

2d. To the extinguishment of the principal.
On all notes, bills, or other similar obligations, whether made payable on demand or at a specified time, wITH INterest annuallf, the annual interests that remain unpaid shall be subject to simple interest from the time they become due to the time of final settlement; but if in any year, reckoning from the time such annual interest began to accrue, payments have been made, the amount of such payments at the end' of such year, with interest thereon from the date of payment, shall be applied:

1st. To liquidate the simple interest that has accrued upon the unpaid annual interests;

2d. To liquidate the annual interests that have become due;
3 d. To the extinguis? mment of the principal.

5\%5. The New Hampshire Rule.

Is the same as the Vermont Rule, except as follows:
1st. Payments made expressly on account of interest accruing but not yet due, do not draw interest.

2d. Such payments, at the end of the year, must be applied to the payment of the interest then due.

5\%6. The Metric System is a system of weights and measures based upon the decimal notation.

5\%\%. The Meter is the unit of length. It is also the fundamental unit, since from it every other unit of measure or weight is derived; hence the name Metric System.

5\%8. The following are the Standard units, from which all the other units of the system are derived:

Units. Names. Derivation. Signification.
Lengti. Mē'ter, from the Greek Métpov, signifying Measure.
Surface. Är, " Latin Area, " Surface.
Volume. Stẽr, " Greek Σ т $\varepsilon \rho \varepsilon o ́ c ̧, ~ " ~ S o l i d . ~$ Capacity. Li'ter, " " ムitpa, " Pound. Weight. Grăm, " " Грú $\mu \mu$, " Small weight.

Units of the higher or lower orders in the decimal scale are formed by prefixing to the standard unit,

5\%9. 1st. For Multiples, or higher orders, the Greek numerals:

580. 2d. For Sub-multiples, or lower denominations, the Latin ordinals:

These prefixes furnish the key to the whole system, since the name at once shows whether the unit is greater or less than the standard unit, and also how many times greater or less.

Thus, 1 deka-meter denotes 10 meters; 1 hekto-gram denotes 100 grams; 1 kilo-liter denotes 1000 liters, etc. Also, 1 deci-meter denotes $\frac{1}{10}(.1)$ of a meter; 1 centi-meter, $\frac{1}{100}(.01)$ of a meter; 1 milli.gram, rovo (.001) of a gram, etc.
581. The Denominations of the Metric System correspond to the orders of the Arabic Notation, and are written like decimals, or U. S. Money, the lowest denomination at the right.

The names, mill, cent, and dime, used in U. S. Money, correspond to mil'li, cen'tt, and dec'i, in the Metric System.

Hence, the eagle might be called a dek'a-dollar, since it is 10 dollars; the dime, a dec'i-dollar, since it is $\frac{1}{10}$ of a dollar, etc.

MEASURES OF EXTENSION.

582. The Mē'ter, which is the standard unit of length, is the one ten-millionth part of the distance from the equator to the north pole, measured on the surface of the earth, and is 39.37079 in ., or $1.09+\mathrm{yd}$.

Metric Denominations.	Symbols.	$\begin{array}{c}\text { Metric } \\ \text { Values. }\end{array}$	$\begin{array}{c}\text { U. S. } \\ \text { Values. }\end{array}$
	1 Mil'li-me'ter.	$m m$.	.001 m.

583. The Square Meter, or Centar, is the unit of ordinary surface measures, and is 1.196 sq. yd., or 10.764 square feet.

1 Sq. Mil'li-mē'ter. sq. mm. . 00155 sq. in. 100 Sq. Miilli-mēters $=1$ Sq. Cěn'ti-mē'ter. sq. cm. $.155 \mathrm{sq} . \mathrm{in}$. 100 Sq. Cenn'ti-mēters $=1$ Sq. Dĕc'i-mē'ter. $\quad s q . d m . \quad 15.5 \mathrm{sq} . \mathrm{in}$. 100 Sq. Děc'i-mēters $=1$ Sq. Me'ter. sq. m. 1.196 sq. yd.
584. The Ar is the unit of land measures, and is a square whose side is 10 meters, and contains 100 sq. meters.

1 Cĕn'tar $(c a)$.	$=1 \mathrm{Sq}$. Mē'ter	sq. m.	1.196 sq. yd.
$100 \mathrm{Cĕn}{ }^{\prime} \operatorname{tars}$	$=1 \mathrm{Ar}$.	a.	119.603 sq. yd.
100 Ars	$=1 \mathrm{Hĕk}{ }^{\prime} \operatorname{tar}$.	$H a$.	2.471 acres.

1. The Meter is used in measuring cloths and short distances.
2. The Kilo-meter, equal to $\frac{5}{8}$ of a mile, nearly, is used for measuring long distances.
3. The $D \check{c} c^{\prime} i-\ddot{a} r$ is $\frac{1}{10}$ of an $\ddot{u} r$; the $D \check{e} k^{\prime}-\ddot{u} r$ is 10 a .; an acre is 40 ärs, nearly.
4. The Cubic Meter is the unit of ordinary solid measures.

1 Cu. Mïl'li-mē'ter. $c u . m m . .000061 \mathrm{cu} . \mathrm{in}$. 1000 Cu. Mîl'̊i-mē'ters $=1 \mathrm{Cu}$. Cěn'ti-mē'ter. cu. cm. . $061 \mathrm{cu} . \mathrm{in}$. 1000 Cu . Cěn'ti-mēters $=1 \mathrm{Cu}$. Děc'i-mé'ter. $c u . d m . ~ .0353 \mathrm{cu} . \mathrm{ft}$. 1000 Cu . Dēc'i-mē'ters $=1 \mathrm{Cu}$. Me'ter. cu. m. $35.3166 \mathrm{cu} . \mathrm{ft}$.
586. The Ster is the unit of wood or stone measures, and is a,cubic meter, equal to 35.3166 cu . ft., or . 2759 cord.

	1 Děc'i-stẽr	$d s$.	$3.53 \mathrm{cu} . \mathrm{ft}$.
10 Děc'i-stẽrs	$=1$ Ster.	δ.	$35.316 \mathrm{cu} . \mathrm{ft}$.
10 Sters	$=1$ Děk'a-stẽr.	Ds.	2.759 cord.

1. The square and cubic measures are only the squares and cubes of the measures of length.
2. The cubic deci-meter is called a lut $^{\prime} t e r$ when used as a unit of liquid or of dry measures.
3. The cubic cen'ti-me'ter and cubic mil'li-me'ter are used for measur. ing minute bodies.
4. The common cord is nearly the same as 3.6 sters, or 36 deci-sters.

MEASURES OF CAPACITY.

58\%. The Li'ter is the unit of capacity or volume for both liquid and dry measures, and is 1 cu . deci-meter, or 1.0567 qt . liquid measure, or . 908 qt . dry measure.

1. The Liter is generally used for measuring liquids in moderate quantities ; the Deka-liter, in large quantities.
2. The Herito-liter is used for measuring grains, etc.
3. Four liters are a little more than 1 gal.; 35 liters, very nearly 1 bu.
4. The Kilo-liter equals 1 cubic meter, or 1 ster, or 35.316 cubic feet.

MEASURES OF WEIGHT.

588. The Gram is the unit of weight, and is the weight of 1 cu . centi-meter of distilled water at its maximum density, equal to 15.432 grains, or . 03527 oz. Avoir.

10 Mil'li-grăms	1 Mǐl'li-grăm. $=1$ Cĕn'ti \cdot grăm.	$m g$ $c g$	$\begin{aligned} & .001 \mathrm{~g} . \\ & .01 \mathrm{~g} . \end{aligned}$	$\begin{aligned} & .01543 \\ & . ~ \\ & \hline \end{aligned}$	
10 Cěn'ti-grăms	$=1$ Děc'i-grăm.	$d g$.	.1 g .	1.543	"
10 Děc'i-grăms	$=1$ Gram.	g.	1 g .	15.43	'
10 Grams	$=1$ Děk'a-grăm.	$D g$.	10 g .	. 3527 oz	oz. A -
10 Děk'a-grăms	$=1$ Hěk'to-grăm.	Hg.	100 g .	3.527	"
10 Hěk'to-grăms	= $1 \mathrm{Kil}^{\prime}$ o-grăm.	Kg.	1000 g .	2.2046	lb. Av.
10 Kil 'o-grăms	$=1 \mathrm{My̆r}$ 'ia-grăm.	Mg.	10000 g .	22.046	"
10 My̆r'ia-grăms		Q.	100000 g.	220.46	"
1000 Kil'os	$=1 \mathrm{Ton}$.	T.	1000000 g .	2204.6	

1. The Kilo-gram, or Kilo, is the unit of common weight in trade, and is a trifle greater than $2 \frac{1}{5} \mathrm{lb}$. Avoir.
2. 1 Kilo-gram $=1$ cubic decimeter $=1$ liter $=\left\{\begin{array}{l}2.6792 \mathrm{lb} . \text { Troy. } \\ 2.2046 \mathrm{lb} . \text { Avoir. }\end{array}\right.$
3. 15 grams are taken as $\frac{1}{2}$ an ounce, at the U. S. Post Office.
4. Units of length, of capacity, and of weight form a scale of tens; hence, in writing metric numbers of these denominations, each order of units will occnpy one place.

Thus, 7642 mm . may be written 764.2 cm ., or 76.42 dm ., or 7.642 m ., or .7742 Dm ., or .07642 Hm .
590. Units of square measures form a scale of lundreds; hence, two places must be allowed to each order.

Thus, 12 sq. m. 6 sq. dm. 3 sq. cm. may be written 12.0603 sq. m., or 1206.03 sq. dm., or 120603 sq. cm.; and 3 Ha .4 a. 2 ca. are written 3.0402 Ha., or 304.02 a., or 30402 ca.
591. Units of solid measures form a scale of thousands; hence, three places must be allowed to each order.

Thus, 36 cu . m. 27 cu . dm. $4 \mathrm{cu} . \mathrm{cm}$. may be written 36.027004 cu . m., or 36027.004 cu . dm., or 36027004 cu . cm.
592. To add, subtract, multiply, and divide Metric Numbers.

1. Add 24.72 Dm., $8.65 \mathrm{Hm} ., 1436 \mathrm{~cm}$., and 28.3 m .

Operation. $-247.2 \mathrm{~m} .+865 \mathrm{~m} .+14.36 \mathrm{~m} .+28.3 \mathrm{~m} .=1154.86 \mathrm{~m}$.
2. From 12.4 Hm . subtract 5.25 m .

Operation. $-1240 \mathrm{~m} .-5.25 \mathrm{~m} .=1234.75 \mathrm{~m}$., Ans.
3. Multiply 3.425 Hm . by 6 .

Operation.- $3.425 \mathrm{Hm} . \times 6=20.550 \mathrm{Hm}$, or 2055 m ., Ans.
4. Divide 2.16 Km . by 3.6 m .

Operation. $-2160 \mathrm{~m} . \div 3.6 \mathrm{~m} .=600$, Ans.

All computations in metric numbers are similar to those in integers and decimals, or in U. S. Money.
5. Add $2 \% .6 \mathrm{~m} ., 362 \mathrm{dm} ., 16.32 \mathrm{Dm}$., and 9.1 Km .
6. Express in kilometers the sum of 475 dm ., 125.3 m ., and $1 \% .341 \mathrm{~m}$.
7. From 12.9 Km . take $25 \% 4.2 \mathrm{~m}$., multiply the result by 6.5 .
8. The distance around a park is 5.125 Km . How many meters will a man travel, who walks 5 times around it?
9. If the distance from Washington to Boston is 619.598 Km ., in what time will an engine make the distance, if it runs, on an average, $44.25 \% \mathrm{Km}$. an hour?
10. From a piece of silk containing $75.125 \mathrm{~m} ., 4$ dresses were cut, each containing 15.6 m . How much remained?
11. How long will it take a man to walk from Philadelphia to New York, if the distance is 160 Km ., and he walks 800 Dm . an hour?
12. When corn is worth $\$ 2.24$ per hektoliter, what is it worth per liter?
13. A car weighing 7.832 T., contains 136 bbl . of flour, each weighing 96.16 Kg . Find the weight of the car and contents, and their difference.
14. Find the cost of 29.5 Kg ., at 16 cents per gram.
15. From 500 Kg . of sugar are taken 250 packages, each containing 1.25 Kg . How much remained ?
16. A merchant resides 1456 m . from his store. How many kilometers will he travel in a week of 6 days, in making two journeys a day, to and from his place of business?

1\%. A tailor cut 5 suits of clothes, each suit containing 7.5 m ., from a piece of cloth containing 45.75 m . How much remained?
18. How many vessels, each containing 3.5 l., can be filled from $42 . \% \mathrm{Dl}$. of wine?

REDUCTION.

593. To change units of the Metric System to units of che Common System, use the equivalents in the preceding tables.
594. To change units of the Common System to units of the Metric System, use the equivalents in the following

595.

Linear Measures.
1 Inch $=2.54$ Centi-meter's.
1 Foot $=.3048$. Meter .
1 Yard $=.9144$ Meter .
1 Rod $=5.029$ Meters.
1 Mile $=1.6093$ Kilo-meters.
Square Measures.
1 Sq. Inch $=6.4528$ Sq. Centi-met.
1 Sq. Foot $=.0929$ Sq. Meter.
1 Sq. Yard $=.8361$ Sq. Meter.
1 Sq. Rod $=35.293$ Centars.
1 Acre $=40.47$ Ars.
1 Sq. Mile $=259$ Hektars.
Solid Measure.
1 Cu. Inch $=16.387 \mathrm{Cu}$. Centi-met.
1 Cu. Foot $=28.317 \mathrm{Cu}$. Deci-met.
'Table.

1 Cu. Yard $=.7645 \mathrm{Cu}$. Meter.
1 Cord $=3.6243$ Sters.
Me.isures of Capacity.
1 Fl. Ounce $=.02958$ Liter.
1 Liq. Quart $=.9465$ Liter.
1 Gallon $=3.785$ Liters.
1 Dry Quart $=1.101$ Liters.
1 Bushel $=.35243$ Helitoliter.
Measures of Weight.
1 Grain Troy $=.0648$ Gram.
1 Ounce Troy $=31.324$ Grams.
1 Pound Troy $=.3 \% 324$ Kilo.
1 Ounce Avoir. $=28.35$ Grams.
1 Pound Avoir. = . 4536 Kilo.
1 Ton $=.907$ Tonneau.

Written Exercises.

Linear Measures.
596. 1. How many feet in $12.25 \mathrm{~m} . ?$ In 135 m .? In 76.75 m .?
2. How many yards in 68.2% m.? In 321.4 dm .?
3. How many meters in 90 yd.? In 12 yd .1 ft .6 in .?
4. How many miles in 8000 m .? In 450 Km .?
5. The distance around a lake is 5.16 Km .? How many meters will a man walk who goes 3 times around it? How many miles?
6. A lady bought 25.5 m . of silk for a dress, at $\$ 3.84$ per meter. What did it cost her?
7. How many meters between two places '75 miles apart?'
8. A merchant bought 300 m . of silk at $\$ 2 \frac{1}{2}$ a meter, and sold it at $\$ 2 \frac{1}{4}$ a yard. Did he gain or lose, and how much?

Square Measures.

9. How many ars in 150 sq. yards? Acres in 1011 ars?
10. Change $336971 \mathrm{sq} . \mathrm{m}$. to ars ; to hektars; to acres.
11. Find the area of a floor 12.8 m . long, and 10.4 m . wide?
12. At 10 cent a sq. meter, what will it cost to paint a surface 22.5 m . long, and 12.4 m . wide?
13. How much carpeting, .8 m . wide, will cover a floor 6.24 m . long, and 5.5 m . wide, and what will be its cost, at $\$ 1.50$ a yard?

Solid Measures.

14. How many cu. feet in 92 sters? How many cords?
15. How many sters in 255 cu . ft.? In 5.75 cords?
16. How many loads of earth, each filling $2.25 \mathrm{cu} . \mathrm{m}$., will fill a space 7 m . long, 6 m . wide, and 2.25 m . deep?
17. How many hektoliters of wheat will a bin contain that is 5 m . square, and 2.5 m . deep?
18. What will be the cost of a pile of wood, 15.7 m . long, 1.5 m . high, and 3.76 m . wide, at $\$ 1.50$ a ster? At $\$ 6$ a cord?
19. What will be the cost of excavating a cellar 14.4 m . long, 8.6 m . wide, and 2.8 m . deep, at $\$.75$ a ster ?

Measures of Capacity.

20. How many gallons in 72.16 1.? Liters in 12 gal.?
21. How many liters in 3 bu. 1 pk.? Bushels in 130.5 l.?
22. From a flask containing 2 Hl ., 2.5 Dl. were drawn out. How many liters remained? How many quarts?
23. A cistern 3.6 m . long, 2.5 m . wide, and 1.7 m . deep, will hold how many liters of water?

24 . If 2 Kl . of barley cost $\$ 56.75$, what will 25 bu . cost?
25. If the price of wine is $\$.75$ a liter, what is it worth a gallon ?
26. 1 bought 251.50 liters of wine in France, at 5.25 francs a liter ; paid \$. 75 a liter duty and freight, and sold it at $\$ 3.50$ a liter. What was my gain?

Measures of Weight.

27. In 960 grams, how many pounds Troy? Avoir.?
28. How many grams in 960 gr.? In 8 lb . Troy.? In 6 lb .8 oz. Avoir. ?
29. A barrel of flour contains 196 lb . Express its weight in metric units?
30. Which is more profitable, and how much per cwt., to sell cheese at 12 cents a pound, or at 25 cts. per kilo?
31. If a kilo of coffee cost $\$.90$, what is the cost of 75 lb ., at the same rate?
32. What price per pound is equivalent to $\$ 25$ per kilo?
33. A grocer buys butter at $\$.25$ per lb., and sells it at $\$.60$ per kilogram. Does he gain or lose, and what per cent?
34. A jeweler bought a gem in Geneva which weighed 375.50 grams, at 10.25 francs per gram, and the duty on it was $\$ 6 \frac{1}{2}$; at what price per gram must it be sold to clear \$125?

2DEFINTTONSC

59\%. Mensuration treats of the mehsurements of lines, angles, surfaces, and solids.
598. A Line is that which has length, but not width or thickness.
599. A Straight Line is a line which does not change its direction.
600. A Curved Line is a line which changes its direction at every point.

601. Parallel Lines are lines which have the same direction. They are equally distant from each other at every point.
602. An Angle is the opening between two straight lines, drawn from the same point.

Thus, the opening between the lines AB and AC is an angle. The lines AB and AC are the sides of the angle, and the point A , in which they meet, is the vertex of the angle.
603. A Right Angle is the angle formed, when one straight line meets another so as to make the adjacent angles equal.

Thus, the adjacent angles BAC and BAD are equal, therefore, right angles.

The lines BA and CD are said to be perpendicular to each other.
604. An Obtuse Angle is an angle greater than a right angle; as DBA.
605. An Acute Angle is an angle less than a right angle ; as DBC.

606. A Surface is that which has length and breadth, without thickness, and may be either plane or curved.

Thus, the surface of a table is plane, that of a ball is curved.

60\%. A Plane Figure is a figure all parts of which are in the same plane.
608. A Polygon is a portion of a plane bounded by straight lines.

The Perimeter of a polygon is the distance around it , ard is equal to the sum of all its sides.

A polygon of three sides is called a Triangle; of four sides, a Quadrilateral; of five sides, a Pentagon; of six sides, a Hexagon ; etc.
609. A Triangle is a polygon of three sides; as ABC.

The Base of a triangle is the side on which it is supposed to stand, AB .
The Vertical Angle is the angle opposite the base,
 as C .
The Altitude is the perpendicular line drawn from the vertical angle to the base, as CD.
610. A Right Triangle is a triangle that has one right angle.

The side, AC, opposite the right angle is called the Hypothenuse; the side AB , the A
 Base; and BC, the Perpendicular.

The relation of the squares described upon the sides of a right triangle is expressed in the following
611. Principles. I. The square on the hypothenuse of a right triangle is equal to the sum of the squares on the other two sides.
II. The square on either of the two sides about the right angle is equal to the square on the hypothenuse, diminished by the square on the other side.

612. A Quadrilateral is a polygon of four sides.

There are three kinds of quadrilaterals, the Parallelogram, the Trapezoid, and the Trapezium.
613. A Parallelogram is a quadrilatcral whose opposite sides are parallel. The opposite sides are also equal.

When a parallelogram is right-angled, it is called a Rectangle; when the four sides of a rectangle are equal, it is called a Square; when the parallelogram is not rightangled, it is called a Rhomboid ; and when the sides of the rhomboid are equal, it is called a Rhombus.
\square

614. A Trapezoid is a quadrilateral, having two of its sides parallel.
615. A Trapezium is a quadrilateral,
 no two sides of which are parallel.

The Altitude of a parallelogram, or trapezoid, is the perpendicular distance between its parallel sides.

The Diagonal of any plane figure is a straight
 line joining the vertices of two of its angles not consecutive.
616. A Circle is a plane figure bounded by a curved line, called the Circumference, all points of which are equally distant from a point within, called the Centre.

The Radius of a circle is a straight line drawn
 from the centre to the circumference.

The Diameter of a circle is a straight line drawn through the cen. tre, and terminated both ways by the circumference.
WRITTEN EXERCISES.

61\%. To find the area of a triangle.

1st. When the base and altitude are given.

1. Find the area of a triangle whose base is 9 ft . and altitude 6 ft .

Solution. $\frac{9 \times 6}{2}=27$; hence, the area is 27 sq . ft.
Explanation.-The area of a triangle is equal to one-half the proo duct of its base and altitude.

Formola: \quad Area of triangle $=\frac{1}{2}($ Base \times Altitude $)$.
2. What is the area of a triangle whose base is 50 ft . and altitude 36 ft .?
3. Find the area of a triangular field whose base is 75 rods and altitude 64 rods.
4. How many square feet in the gable end of a house 44 ft . wide and 14 ft .6 in . high ?

2d. When the three sides are given.
5. What is the area of a triangle whose sides are 30,40 , and 50 feet?

Solution.- $(30+40+50) \div 2=60=\frac{1}{2}$ the sum of the sides.

$$
60 \times \overline{60-30} \times \overline{60-40} \times \overline{60-50}=60 \times 30 \times 20 \times 10=360000 .
$$

$$
\sqrt{360000}=600 \text {; hence the area is } 600 \text { sq. } \mathrm{ft} .
$$

Rule.-From the half sum of the three sides, subtract each side separately; then multiply the half sum and the three remainders together, and extract the square root of the product. The result will be the area.
6. What is the area of a triangle, whose sides are 25,36 , and 49 inches?
\%. How many acres in an equilateral triangular field, each of whose sides is 70 rods?
8. Find the area of an equilateral triangle whose sides are each 48 feet.
9. The base of a right triangle is 4 , and its perpendicular is 3 ; what is the hypothenuse?

Solution. $4^{2}+3^{2}=16+9=25$, the area of the square on the hypothennse $(611,1)$. Therefore, the square root of 25 is the hypothenuse. $\sqrt{25}=5$, the hypothenuse. Hence,

Formola: Hypothenuse $=\sqrt{\text { Base }^{2}+\text { Perpendicular }^{2}}$.
10. What is the hypothenuse of a right triangle, whose base is 30 ft ., and its perpendicular 16 ft .?
11. Two rafters, each 20 ft . long, meet at the ridge of a roof 12 ft . above the base of the gable. What is the width of the house?
12. The triangular gable of a building has a base of 30 ft ., and a perpendicular height of 8 ft .; how long must the rafters be that they may project over the sides 2 feet ?
13. The rafters of a house are 17 ft . long, and the width of the gable is 30 ft. ; what is the height of the gable?

Solution. $\frac{1}{2}$ of $30 \mathrm{ft} .=15 \mathrm{ft} ;{ }^{7} 7^{2}-15^{2}=64 ; \sqrt{64}=8 ;$ hence the height of the gable is 8 ft . $(\mathbf{6 1 1}, \mathrm{II})$.

Formula: Perpendicular $=\sqrt{\text { Hypothenuse }}{ }^{2}-$ Base 2.
14. The rafters of a house are 17 ft . long, and the height of the gable 8 ft .; what is the width of the building?

Solution. $17^{2}-8^{2}=225 ; \sqrt{225}=15$, half the width; hence the width is 30 ft .

Formula: Base $=\sqrt{\text { Hypothenuse }{ }^{2}}$ - Perpendicular ${ }^{2}$.
15. A room is 40 ft . long and 30 ft . wide; what is the distance from one corner to the opposite corner?
16. A ladder 50 ft . long, whose foot is 20 ft . from a building, reaches to a window ; how high is the window from the ground ?

1\%. A tree was broken 39 ft. from the bottom, and fell so that the end struck 52 ft . from the foot; what was the length of the tree?
18. Two vessels sail from the same port, one sailing directly south 3 miles an hour, the other east 4 miles an hour ; how far apart are they at the end of 24 hours?
19. A park 100 rd . long and 92 rd . wide, has a walk running through it from opposite corners in a straight line. How long is the walk?
20. A ladder 82 ft . long is placed against a house so that its foot is 18 ft . from the building. How high does it reach?

618. To find the area of a parallelogram.

1. Find the area of a parallelogram 18 ft . by 12 ft . wide.

Solution. $18 \mathrm{ft} . \times 12=216 \mathrm{sq} . \mathrm{ft}=24 \mathrm{sq} . \mathrm{yd}$. , Ans.
Explanation.-The area of a parallelogram is equal to the area of a rectangle having the same oase and altitude. Hence,

Formula : Area of a parallelogram $=$ Base \times Altitude .
2. How many square feet in a lawn 64 ft . long and $32 \frac{1}{2} \mathrm{ft}$. wide ?
3. How many acres in a field 80 rods square?
4. How many acres in a field in the form of a rhombus, each side measuring 40 rods, and the perpendicular distance between two sides being 18 rods?
5. Find the area of a piece of land in the form of a rhomboid, the base being 17.5 rods and altitude 12 rods.

619. To find the area of a trapezoid.

1. What is the area of a trapezoid whose bases are 12 ft . and 10 ft ., and altitude 5 ft .?

Solution. $\frac{12+10}{2} \times 5=55$; hence the area is 55 sq. ft.
Formola: Area of a trapezoid $=\frac{1}{2}$ Sum of bases \times Altitude.
2. What is the area of a trapezoid whose bases are 178 ft . and 124 ft ., and altitude 11 ft .?
3. How many acres in a field in the form of a trapezoid, whose parallel sides are 38 rods and 26 rods, and the distance between them 10 rods?
4. How much land in a field, the two parallel sides being 75 and 60 rods respectively, and the perpendicular distance between them being 45 rods?
620. To find the circumference of a circle when the cliameter is given. Conversely,

To find the diameter of a circle when the circumference is given.

1. Find the circumference of a circle whose diameter is 20 ft .?

Operation. $20 \mathrm{ft} . \times 3.1416=62.832 \mathrm{ft}$., Circumference.
2. Find the diameter of a circle whose circumference is 18 ft .

Operation. $18 \mathrm{ft} . \div 3.1416=5.7 \mathrm{ft} .+$, Diameter. Hence,
Formulas: $\left\{\begin{array}{l}\text { 1. Circumference }=\text { Diameter } \times 3.1416 . \\ \text { 2. Diameter }=\text { Circumference } \div 3.1416 .\end{array}\right.$
3. What is the diameter of a wheel whose circumference is 48 ft .?
4. What is the circumference of a tree whose diameter is 3 ft .6 in .?
5. Find the radius of a circle whose circum. is 75 ft .
621. To find the area of a circle when the radius is given. Conversely,

To find the radius of a circle when the area is given.

1. Find the area of a circle whose diameter is 20 ft .

Operation. $\frac{20 \mathrm{ft}}{2}=10 \mathrm{ft}$., the radius; $10^{2} \times 3.1416=314.16$; hence, area $=314.16$ sq. ft.
2. Find the radius of a circle whose area is 314.16 sq. ft ,

Operation. $\sqrt{314.16 \div 3.1416}=10$; radius $=10 \mathrm{ft}$. Hence,
Formulas : $\left\{\begin{array}{l}\text { 1. Area }=\text { Radius } \times 3.1416 . \\ \text { 2. Radius }=\sqrt{\text { Area } \div 3.1416 .}\end{array}\right.$
3. Find the area of a circle whose radius is 12 ft .
4. Find the area of a circle whose circumference is 150 ft .
5. How many acres in a circular park whose circumference is 1 mile?
6. How long a rope will it take to fasten a horse to a post, so that he may graze over $1 \frac{1}{4}$ acres of grass?

622. A Solid or Body has three dimensions, length, breadth, and thickness.
623. A Prism is a solid, two faces of which are equal and parallel polygons, and the other faces parallelograms.

The Bases of a prism are the equal and parallel polygons.
The Lateral Faces of a prism are all the faces except the bases.
The Lateral or Convex Surface of a prism is the sum of its lateral faces.

The Lateral Edges of a prism are the straight lines in which the lateral faces meet.

The Altitude of a prism is the perpendicular distance between the planes of its bases.
A Prism is triangular, quadrangular, pentagonal, hexagonal, etc., according as its bases are triangles, quadrilaterals, pentagons, hexagons, etc.

624. A Right Prism is a prism whose lateral faces are rectangles. Hence, its lateral edges are perpendicular to its bases.
625. A Parallelopipedon is a prism whose bases are parallelograms.
626. A Rectangular Parallelopipedon is a parallelopipedon, all the faces of which are rectangles.

62\%. A Cube is a parallelopipedon, all the faces of which are squares (251).

628. A Cylinder is a solid bounded by a uniformly curved surface, with two bases which are equal and parallel circles.

The Altitude of a cylinder is the perpendicular
 distance between its bases.
629. A Pyramid is a solid, one face of which is a polygon, and the other faces triangles which have a common vertex.
630. A Cone is a solid having one base, which is a circle, and a uniformly curved surface terminating in a point, called the vertex.

The Altitude of a pyramid or cone is the perpendicular distance from the vertex to the plane of the base.

The Slant Height of a regular pyramid is the straight line drawn from its vertex perpendicular to one side of the base; the slant height of a cone is a straight line from the vertex to the circumference of the base.
631. The Frustum of a pyramid, or

of a cone is that part which remains after cutting off the top, by a plane parallel to the base.
632. A Sphere is a solid bounded by
 a. curred surface, all points of which are equally distant from a point within, called the Centre.

The Diameter of a sphere is a straight line drawn through the centre, and terminated both
 ways by the surface.

The Radius of a sphere is a straight line drawn from the centre to the surface.
633. The Volume of a solid is the amount of space it contains.
634. The Convex Surface of a solid is all its surface, except its base or bases.

> Wiritten Exercises.
635. To fint the convex surface of a right prism or cylinder.

1. Find the conrex surface of a prism whose base is a pentagon, each side of which is 5 ft ., and its altitude 8 ft .

Operation. $5 \mathrm{ft} . \times 5=25 \mathrm{ft}$., perimeter ; $25 \times 8=200 ; 200$ sq. ft., convex surface.
 Hence,

Formola: Convex Surface of a Right Prism $=$ Perimeter of Base \times Altitude.
2. What is the convex surface of a prism whose altitude is 12 ft ., and the base a triangle, each side of which is 5 ft . 6 in.?

3. Find the convex surface of a cylinder the altitude of which is 3 ft .6 in ., and the circumference 6 ft .3 in .

Operation. $6.25 \times 3.5=21.875$; 21.875 sq. feet, convex surface. Hence,

Formula : Convex Surface of a Cylinder
$=$ Circumference of Base \times Altitude.
4. The altitude of a cylinder is 4 ft . and the radius of its base 18 in . What is the area of the convex surface?

The entire surface of a prism or cylinder is found by adding the areas of the bases to the convex surface.
5. Find the entire surface of a cube whose cdge is 6 ft .
6. Find the convex surface of a right prism whose altitude is 9 ft . and the base a regular hexagon, each side of which is 2 ft .
$\%$. What is the entire surface of a parallelopipedon 8 ft . 6 in . long, 4 ft . wide, and 3 ft . high ?
8. Find the entire surface of a cylinder, the altitude of which is 30 in . and the diameter 18 in .
636. To find the volume of a prism or cylinder.

1. Find the volume of a square prism, the altitude of which is 9 ft . and each side of the base 4 ft .
operation. $4 \times 4 \times 9=144$; 144 cu . ft., Volume.
2. Find the volume of a cylinder, the altitude of which is ${ }^{2} \frac{1}{2} \mathrm{ft}$. and the radius of the base 2 ft .

Opleation. $2^{2} \times 3.1416 \times 7 \frac{1}{2}=92.248 ; 92.248$ cubic feet, Volume. Hence,

Formula: Volume of Prism or Cylinder
$=$ Area of Base \times Altitude.
3. What is the volume of a cube whose edges are 4 ft . 3 in.?

The area of the base of a cube is the square of its edge. Hence, Formula : Volume of a Cube $=$ C'ube of its Edge.
4. Find the cost of a piece of timber 32 ft . long and 18 in . square at each end, at 15 cents ι cubic foot.
5. What is the volume of a cylinder whose altitude is 8 ft . and diameter 3 ft .6 in .?
6. What is the value of an oak log 20 ft . long, its average curcumference being 8 ft ., at $\$.30$ a cubic foot?

63\%. To find the convex surface of a pyramid or соие.

1. What is the convex surface of a square pyramid whose base is 12 ft .6 in ., and its slant height 18 ft .?

Operation. $12.5 \mathrm{ft} . \times 4=50 \mathrm{ft}$., perimeter of base; $50 \times \frac{18}{2}=450$; 450 sq. ft., convex surface. Hence,
Formula: Convex Surface of a Pyramid
$=$ Perimeter of Base $\times \frac{1}{2}$ Slant Height.
2. What is the convex surface of a cone, the slant height of which is 15 ft . and the circumference of the base 20 ft .?

Operation. $20 \times \frac{15}{2}=150 ; 150$ sq. ft., convex surface. Hence,
Formula: Convex Surface of a Cone
$=$ Circum. of Base $\times \frac{1}{2}$ Slant Height.
The entire surface of a pyramid or cone may be found by adding the area of the base to the area of the convex surface.
3. Find the entire surface of a cone whose slant height is 10 ft . and the radius of its base 3 ft .6 in .
4. Find the entire surface of a pyramid, the base of which is 16 ft . square and the slant height $32 \mathrm{ft}_{\text {。 }}$

638. To find the volume of a pyramid or cone.

1. What is the volume of a square pyramid, the altitude of which is 21 ft . and its base 8 ft . square?

Operation. $8 \times 8 \times \frac{21}{3}$, or $8^{2} \times \frac{\frac{31}{3}}{3}=448 ; 448 \mathrm{cu}$. ft., Volume.
2. Find the volume of a cone, the altitude of which is 12 ft . and the radius of the base 6 ft .

Operation. $6^{2} \times 3.1416 \times \frac{12}{3}=452.39 ; 452.39 \mathrm{cu}$. ft., Volume. Hewce,

> Formula: Volume of Pyramid or Cone $$
=\text { Area of Base } \times \frac{1}{3} \text { Altitude. }
$$

3. Find the volume of a pyramid whose altitude is 30 in ., and the base a triangle 14 in . on each side.
4. Find the volume of a cone whose altitude is 48 ft . and the circumference of the base 78.54 ft .
5. What is the volume of a pyramid whose altitude is 60 ft ., and its base a rectangle 15 ft . by 18 ft .?
6. Find the solid contents, in feet, of a square stick of timber terminating in a point, 12 by 18 inches at the base, and the length 36 feet.

639. To find the surface of a sphere.

1. What is the surface of a sphere whose diameter is 18 inches?

Operation. $18^{2} \times 3.1416=1017.8784 ; 1017.8784 \mathrm{sq} . \mathrm{in} .=7.0686$ sq. ft., Surface. Hence,

Formula: Surface of a Sphere $=$ Diameter $^{2} \times 3.1416$.
2. Find the surface of a globe 2 ft .6 in . in diameter.
3. What is the surface of a ball whose radius is 18 in .?
4. The earth is 7912 miles in diameter. How many square miles on its surface?
640. To find the volume of a sphere.

1. Fi \lrcorner d the volume of a sphere whose diameter is 3 ft .

Operation. $3^{3} \times .5236=14.1372 ; 14.1372 \mathrm{cu} . \mathrm{ft}$., Volume. Hence,
Formula: Volume of a Sphere $=$ Diameter $^{3} \times .5236$.
2. Find the volume of a globe whose diameter is 40 in .
3. Find the volume of a sphere whose radius is 6 inches.
4. How many cubic feet in a globe 18 in . in diameter?
641. To gange or measure the capacity of a cask.

1. How many wine gallons in a cask whose head diameter is 22 in., bung diameter 28 in ., and its length 36 in ?

Solutron. $2 \overline{2}+28$ in. $\div 2=25$ in., mean diameter. $25^{2} \times 36 \times .0034=76.5 ; 76.5$ gal., capacity.

Rule.-Multiply the square of the mean diameter in inches by the length in inches, and this product by .0034. The result will show the capacity in wine gallons.

When the cask is not full stand it on the end, find the mean diameter of the part occupied by the liquid, multiply its square by the height of the liquid, and this product by .0034 .
2. What is the capacity of a cask whose bung diameter is 30 in ., head diameter 24 in ., and its length 40 in .?
3. How many gallons in a cask whose head diameter is 22 in., bung diameter 26 in ., length 36 in. , and when standing on the end the height of the liquid is 24 in .?
4. What is the number of gallons in a cask whose bung diameter is 38 in ., head diameter $3 \% \mathrm{in}$., and length 42 inches?
642. Duodecimals are denominate fractions of a linear, square, or cubic foot, formed by successively dividing by 12 .

Duodecimals are used chiefly by artificers in the measurement of lines, surfaces, and solids.

The foot is the unit of measure, and is divided into 12 equal parts, called primes ('); each prime, into 12 equal parts, called seconds ("); each second, into 12 thirds ("'); and each third, into 12 fourths (${ }^{\prime \prime \prime \prime}$), etc. These marks used to denote the different denominations are called Indices.

Table of Units.

$$
\begin{aligned}
& 1^{\prime}=\quad \frac{1}{1^{2}} \text { of a foot. } \\
& 1^{\prime \prime}=\frac{1}{1_{2}} \text { of } 1^{\prime}=\frac{1}{1_{2}^{2}} \text { of } \frac{1}{12} \text { of } 1 \mathrm{ft} \text {. }=\frac{\mathrm{T}^{\frac{1}{44}}}{} \text { of a foot. } \\
& 1^{\prime \prime \prime}=\frac{1}{12} \text { of } 1^{\prime \prime}=\frac{1}{12} \text { of } \frac{1}{142} \text { of } 1 \mathrm{ft} \text {. }=\frac{1}{17288} \text { of a foot. } \\
& 1^{\prime \prime \prime \prime}=\frac{1}{12} \text { of } 1^{\prime \prime \prime}=\frac{1}{12} \text { of } \frac{1}{12288} \text { of } 1 \mathrm{ft} \text {. }=\frac{1}{20 \frac{1}{350}} \text { of a foot. }
\end{aligned}
$$

643. Duodecimals are added and subtracted in the samu manner as other Compound Denominate Numbers.
644. Multiplication of Duodecimals is similar to that of Compound Numbers.

The denomination of the product of two or more factors is indicated by the sum of their indices.

Written Exercises.

645. 646. Multiply $18 \mathrm{ft} .6^{\prime}$ by $9 \mathrm{ft} .3^{\prime}$.

Explanation.- $6^{\prime} \times 3^{\prime}=18^{\prime \prime}=1^{\prime} 6^{\prime \prime}$. Write the
$18 \mathrm{ft} .6^{\prime}$ $9 \mathrm{ft} .3^{\prime}$
4 ft . ${ }^{\prime \prime} 6^{\prime}$ $166 \mathrm{ft} .6^{\prime}$
$1 \% 1 \mathrm{ft}^{1} 1^{\prime} 6^{\prime \prime}$ is 171 ft . $1^{\prime} 6^{\prime \prime}$ 。

Multiply and explain the following :
2. $16 \mathrm{ft} .9^{\prime}$ by $7 \mathrm{ft} .8^{\prime}$. \mid 5. $12 \mathrm{ft} .4^{\prime} 9^{\prime \prime}$ by $9 \mathrm{ft} .8^{\prime} 6^{\prime \prime}$.
3. $14 \mathrm{ft} .10^{\prime} 8^{\prime \prime}$ by $2 \mathrm{ft} .6^{\prime} 4^{\prime \prime}$. 6. 45 ft . $0^{\prime} 10^{\prime \prime}$ by $9^{\prime} 8^{\prime \prime}$.
4. $10 \mathrm{ft} .9^{\prime} 8^{\prime \prime}$ by $10^{\prime} 7^{\prime \prime \prime} . \mid$ 7. 24 ft . $6^{\prime} 2^{\prime \prime}$ by $6 \mathrm{ft} .7^{\prime \prime} 3^{\prime \prime}$.
8. What are the contents of a block of granite $7 \mathrm{ft} .8^{\prime} 6^{\prime \prime}$ by $3 \mathrm{ft} .4^{\prime} 2^{\prime \prime}$ by 2 ft . $2^{\prime} 4^{\prime \prime}$?

9 . What is the area of a marble slab $5 \mathrm{ft} .6^{\prime} 4^{\prime \prime}$ long and $2 \mathrm{ft} .3^{\prime} 6^{\prime \prime}$ wide?

646. In the survey and the division of a new territory of land, the first thing done is to run a line north and south, marking its course by stones, posts, marked trees, and other means, throughout its entire length. Such a line is called the Principal Meridian.

64\%. In like manner a line is run east and west, which is called the principal Base Line.
648. Next, lines are run 6 miles apart, and parallel to the Principal Meridian; then, other lines 6 mi . apart, and parallel to the Base Line, forming squares 6 mi . square, each containing 36 sq. miles, or 23040 acres. These divisions are called Townships, and are designated by their number, north or south of the Base Line.
649. A Range is a line of townships running north and south, and is known by its number east or west of the Principal Meridian.
650. A Township is divided into 36 equal squares, called Sections, each 1 mile square, and containing 640 A .
651. A Section is variously divided for purposes of sale. The U. S. Land Office recognizes the following divisions:

Half-Section	$=1 \mathrm{mi}$.	0 Acres.
Quarter-Section	$=\frac{1}{2} " \times \frac{1}{\frac{1}{2}}{ }^{\prime \prime}=\frac{1}{4}$	$=160$
Half-Quarter-Section	= $\frac{1}{2}$ " $\times \frac{1}{4}{ }^{\prime \prime}=\frac{1}{8}$	$"=80$
Quarter-Quarter-Section	= $\frac{1}{4}$ " $\times \frac{1}{4}$ " $=$	" $=40$

A TOWNSHIP

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

A SECTION ENLARGED

652. The above diagrams show the division of a township into sections, and the subdivision of a section enlarged.

The parts into which a section is divided and designated by letters A, a, b, c, and d, are named as follows:

	W $\frac{1}{2}$ of Section	0
$\mathrm{a},$	S. E. $\frac{1}{4}$ of Section	60
b;	W. $\frac{1}{2}$ of N.E. $\frac{1}{4}$ of Section	
	S. E. $\frac{1}{4}$ of N.E. $\frac{1}{4}$ of Section	40
	N.E. $\frac{1}{4}$ of N.E. $\frac{1}{4}$ of Sect	

Written Exercises.

653. 654. Thirty families of emigrants bought half a township of land, at Government price ($\$ 1.25$ an acre), and divided it equally. How many acres did each receive? What part of a section? What was the cost of the whole, and of each part?
1. A man bought the E. $\frac{1}{2}$ of the N. E. $\frac{1}{4}$ of a section of land, at $\$ 2 \frac{1}{2}$ an acre. What did it cost him?
2. He afterward purchased the N. E. $\frac{1}{4}$ of the S. E. $\frac{1}{4}$ of the same section. How many acres did he then own? Show by a diagram how it lay.
3. If I buy the N. W. $\frac{1}{4}$ and the N. E. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of a section of land, how many acres do I buy? What part of a whole section? Locate the parts by diagram.
4. James Ray bought of the N. Pacific R. R. Co. Sect. 10, Township 6 N , Range 4 E , at $\$ 2$ an acre. He afterward sold the S. W. $\frac{1}{4}$, at $\$ 2 \frac{1}{2}$ an acre ; the E. $\frac{1}{2}$ of the S. E. $\frac{1}{4}$, at $\$ 3$ an acre ; the W. $\frac{1}{2}$ of the N. W. $\frac{1}{4}$, at $\$ 2.75$ an acre; and the N. E. $\frac{1}{4}$, at $\$ 2 \frac{1}{4}$ an acre. How many acres had he left? How much more or less than the cost of the whole did he receive for what he sold? Locate by a diagram.
5. What will be the cost of the material for fencing a quarter-quarter-section of land, with a boaid fence, allowing 2 posts and 4 boards to the rod, the boards being 12, 10, 8 , and 8 inches wide, respectively; the posts costing $\$ 10$ per C . and the boards $\$ 16$ per M.?

6. The Old French Linear and Land Measure is still partially used in Louisiana, and in other French settlements of the United States.

Table of Units.

12 Lines $=1$ Inch.	6 Feet $=1$ Toise.
12 Inches $=1$ Foot.	32 Toises =1 Arpent.
	1024 Sq. Toises = 1 Sq. Arpent.

The French Foot equals 12.79 English inches.
The Arpent is the old French name for Acre, and contains nearly $\frac{5}{8}$ of an English Acre.
655. The following are still used to some extent in Texas, New Mexico, and other Spanish settlements of the United States:

Table of Units.
1000000 Sq. Varas $=1$ Labor $=177.136$ Acres (American) .
2.5 Labors $=1$ League $=4428.4$
The Spanish Foot $=11.11 \mathrm{in}$. (Am.) ; 1 Vara $=33 \frac{1}{3} \mathrm{in}$. (Am.).
108 Varas $=100 \mathrm{yd} . ;$ and 1900.8 Varas $=1$ Mile.
Other Denominations in Use.
5000 Varas Square $=1$ Square League. 1000 Varas Square $=1$ Labor, or $\frac{1}{25}$ League.
5645.376 Square Varas $=4848$ Sq. Yards $=1$ Acre.
23.76 Square Varas $=1$ Square Chain $=\frac{1}{1_{0}^{10}}$ Acre.
1900.8 Varas Square $=1$ Section $=640$ Acres.

656. Lumbermen sometimes, in marking lumber, employ a modification of the Roman Method of Notation. The first three characters are like the Roman. The others are as follows :

41

The answers to many of the introductory and numerical examples and also to the more simple applied examples of many of the articles have been omitted. The pupil may be required to verify such, at the option of the teacher.

Art. 43. 1. 6456.2 .7456. 3. 8104.4 .18224 .5 .31836. 6. 111752.

Art. 44. 1. $\$ 250.65 . \quad$ 2. $\$ 385.45$. 3. $\$ 353.13$. 4. $\$ 411.22$. 5. $\$ 488.17$. 6. $\$ 690.38$. \%. \$132.51. 8. \$166.37. 9. \$181.98. 10. $\$ 306.43$. 11. \$411.95. 12. 7732 acres. 13. 5032 yd. 14.6076 men . 15. $\$ 614.36 .16 .2165$ bu.; $\$ 4678.70$. 17. $\$ 14010.50$. 18. 8057 lb . 19. $\$ 15085.50$. 20. $\$ 18701.15$. 21. $\$ 9687.1$. 22. 3220 Cd .23. $\$ 7775$, C's ; \$15550, all. 24. 2778 sheep. 25. $\$ 39725 . \quad 26.11574 \mathrm{mi}$. 27. $\$ 30975$. 2S. $\$ 4308725.24$. 29. $\$ 1362.23$. SO. $\$ 452.65 . \quad 31$. $\$ 571.79$. 32. $\$ 865.88$. 33. $\$ 1028.30$. 34. $\$ 961.47 . \quad 35 . \$ 728 . \quad 36$. 7174716. 37. 13778591. Sร. 6026729 . 39. $1433655 . \quad$ 40. 1002991. 41. 7109260. 43. $\$ 1293.26$. 43. $\$ 119.82$. 44. $\$ 1584.80$. 45. \$471.39. 46. \$2501.0Ј. 47. 109ธ゙4973. 48. 12891994. 49. 9223449. 50. 257388. 51. 3198138.

Art. 56. 39. 13102. 40. 621977. 41. 90858. 42. 164040. 43. 640073. 44. $\$ 180.47 .45 . \$ 47243.50$. 46. $\$ 533.82 .47 .14916 \mathrm{ft}$. 48. 30081 votes. 49. 21452. 50. $\$ 458.79$.

Alt. 5\%. З. 15867. 4. 24217. 5. \$248.77. 6. 6750.
Art. 5S. 1. $3747 . \quad$ 2. 1553 . 3. $\$ 1534.25$. 4. 929496 sq. mi. 5. 143563 sq. mi. C. $\$ 2577.25$. 7. \$289.25. 8. 85375 sq. mi.; 38219 sq. mi. 9. $\$ 4307.40$. 10. $\$ 2211.35$. 11. $\$ 11390$. 12. $\$ 16064.70$. 13. 7415 bu . 14. $\$ 7389$. 15. 797 bu . 16. $\$ 7802.50$, C's, $\$ 8539.25$.

Avt. \%\%. 2. $49056,65700,111252,212868$. 3. 530620,799632 , 360328 , 656488. 4. 7394760, 9955872, 11110176, 15727392. 5. $\$ 46465.92, \$ 69698.88, \$ 42593.76, \$ 169729.68$. 6. $\$ 578928$. 7. $\$ 49476$. 8. \$4593.75. 9. \$15858.25. 10. \$28017, \$3279. 11. 5472076 feet. 12. 1383242 days. $13 . \$ 428716.08$. 14. 17013152 cts .15 .3909682 lb , 16. 46385452 qt . 17. $45968904 . \quad 18 . \$ 370451.04$. 15. 1356967228. 20. 646520814.21 .459886110 . 23. 62581459114.

Art. S2. 3. $3700,37000,22200,92500$. 4. 190400, 952000, 12240000,9112000 . 5. $492000,1180800,12300000$, 6150000.6. $3152100000,17021340000,19164768000$. 7. 1313160000. 8. \$4950, $\$ 6600$. 3. $\$ 1059.84 . \quad 10$. $\$ 940.80, \$ 1008$. 11. \$20700, $\$ 30705.12$. $84000 \mathrm{lb} ., 126000 \mathrm{lb}$. 13. $112560 \mathrm{yd} . ; \$ 15758.40$. 14. 451200. 15. 1804200. 16. 2758720. 17. \$25926.48. 1s. \$24210. 19. \$1792C000. ;20. 12600000. 21. 87935040. 22. 307660800. 23. 80. 24. 12. 25. 15. 26. 8. 27. 4. 28. 4. 29. 5. 30. 3. 31. 10. 32. 9.

Art. 83. 1. 434, 88367608. 2. \$60480900. 3. $\$ 53617.55 .4$. 41906656. 5. \$922.56. 6. \$825. 7. \$1650. 8. \$669.60. 9. \$3003.78, $\$ 5006.30$. 10. $\$ 348 . \quad 11 . \$ 2145070$. 12. 223792 lb .; $\$ 38044.64 .13$. $\$ 1356264 . \quad 14 . \$ 1119.70$. 15. $\$ 24250, \$ 13600$, §8175. 16. $\$ 109.17$. \$11470. 18. \$50.40. 19. \$186.80. 20. 179014770. 21. 12353376. 22. 1177920. 23. 6008800. 24. \$1453022.75. 25. \$22727.40. 26. 1105900.

 2735. 12. 826. 13. 125.14 .31416 . 15. $10020{ }_{5,5}^{5}$. 16. 1283 men.

 857 lb . 28. 456 cows. 29. 196_{15}^{350} bales. 30. $1500,984,1968$. 31. 73_{152}^{7248} loads. 32. $\$ 1256$. 33. $\$ 787.50, \$ 2.10$. 34. $4014 \frac{49}{412}, 32535 \frac{277}{878}$,

Arts. 103, 104. 2. 59. 3. 573. 4. 1354. 6. 24. 7. "10. 8. 105. 9. 143 . 3. $13475,1347 \frac{50}{100}, 134_{1750}^{7000}, 13 \frac{4750}{10000}$. 4. 70112,
 $1207 \frac{217700}{2600 \%}$. 6. $64,115.7 .83$ lots. 8. $\$ 776 \frac{640}{960} . ~ 2 . ~ 20 \frac{3}{3} 480.10$.

Apt. 111. 4. 3. 5. 16. C. 12. \%. $9 \frac{2}{7} . \quad$ 8. 61. 9. $41 \frac{1}{7} .10$.
 21. 36 cts. 22. \$112. 23. 48. 24. $60 \frac{3}{4} \mathrm{lb}$. 25. 2891. 26. 7. 27. 98.

Art. 116. ?. \$11.52. 3. $\$ 36.00, \$ 93.75$. \&. $\$ 158.12, \$ 276.04$ 5. $\$ 1103.76$. 6. $\$ 105.84$. 7. $\$ 372, \$ 386.88, \$ 406.72$.

Art. 11\%. 2. \$.75. 3. \$16, \$14.25, \$17.60. 4. \$.09, \$.1?. 5. $\$ 6.25, \$ 87.50, \$ 231.25 . \quad$ C. $\$ 16.83, \$ 29.92, \$ 54.23, \$ 100.98$.

Arts. 118, 120. . . $900,720,654_{\mathrm{f} 1 \mathrm{f}}, 600$. 3. $18,40,57,1 \%$. 4. $15,20,37.2 . \$ 9, \$ 10.80$. 3. $\$ 15, \$ 10$. 4. $\$ 25, \$ 18.75$. $5 . \$ 3.60, \$ 3$.
6. $\$ 18.50$. $7.84 \frac{20}{5}$ bu. 9. $\$ 168, \$ 180, \$ 192, \$ 216$, $\$ 324.10$. $\$ 264$, \$375.

Art. 121. 2. 4, 36, 23. 3. $576,432,360,288.4 .252,315$, 378, 504. 5. 6, 3, 2.
 $579840 \frac{79}{132}$. 2. 1887378 . 3. 67 , rem. 999. 4. 109, 278. 5. 11798.6. 67 times. 7. 13. 8. 29535. 9. $216 \mathrm{lb} . \quad 10.7198 .11 .5102300 .12$. 6 tubs. 13. 2199077. 14. 307680 , 19230. 15. $\$ 2120$. 16. $\$ 1779.75$. $17.66 \mathrm{bu} .18 . \$ 2.25 . \quad 19.95 \mathrm{bu} .20 . \$ 10922, \$ 20296, \$ 6880.21$. 210 days. 22. 122. 23. 46. 24. $\$ 1560$. 25. $\$ 12$. 26. $\$ 28.50 .28$. 51250. 29. Lot, $\$ 4930$; house, $\$ 7570$. 30. $\$ 3167$, 1st; $\$ 4220,2 \mathrm{~d}$. 31. 1781, 2008. 32. \$754. 33. \$.60. 34. 96 ; $\$ 51$. 35. \$3704. 36. 21. 37. 105399. 38. 14912. 39. \$996. 40. \$2330.

Art. 142. 2. 2, 2, 3, 3. 3. 2, 2, 3, 7. 4. 2. 5. 2, 2, 3. 6. 3, 7. 7. 2, 2, 2, 3. 8. 2, 2, 3. 9. 2, 2, 2. 10. 5.

Art. 143. 2. 4. s. 2. 4. 17. 5. 14. 6. ц2. ̃.. 26. 8. 8. 9. 12. 10. 28. 12. 15. 13. 13. 14. 16. 15. 31. 16. 7. 17. 101. 18. 595. 19. 15. 20.11. 21.137. 22. 1. 23. 2. 24. 2. 25.84. 26. 132.

Art. 144. 2. 240. 3. 432.4 .2520 .5 .630 .6 .140 .7 .19656. 8. 2520. 9. 780. 10. 46 . 11. 1600. 12. 2772. 13. 44100.

Art. 146. 1. 2, 2, 3, 7; 2, 3, 5, 5, 7; 3, 5, 7. 2. 56 ft ; 1 ton ; $\$ 2, \$.27$. 3. 14 ft 4. 60. 5. 3240 bu . 6. 2337. 7. 35. 8. $\S 37$; $20,27,31$. 9. $\$ 1190$. 10. 10626.

Art. 17 8. 24. $30 \frac{31}{120}$. $25.85 \frac{7}{8} \mathrm{lb}$. 26. $183 \frac{17}{67}$ acres. 27. $\$ 10_{\frac{3}{3} 9 .}$.
 33. $278 \frac{7}{18}$ tons. $34 . \frac{31}{165} .35 .17 \frac{5}{9} .36 .15 \frac{43}{8} .3 \% .26 \frac{4}{5}$.

Art. 181. 7. 49. 8. 64. 9. 391. 10. $\frac{8}{20}$. 11. 64. 12. $2 \frac{10}{27}$. 13. $38 \frac{\mathrm{~F}}{18} . \quad$ 14. 2. $15.36 \frac{2}{3}$. $16.4274,2735 \frac{1}{4}, 889 . \quad$ 17. $\$ 100 . \quad 18 . \$ 113$.

 $3 \frac{17}{180}$. $57.71 \frac{37}{80} . \quad 58.37 \frac{3}{6}$. $59.26 \frac{3}{10} .60 .18 \frac{161}{180}$.

 25. $4 \frac{4}{5}$. 26. $\frac{12}{85}$. 27. 36. 28. $\frac{21}{\frac{1}{0} .}$ 29. $\frac{3}{7}$. 30. $\frac{32}{25} \frac{0}{89}$. 31. 100. 32. 121. 33. $\frac{45}{10 \mathrm{~s}}$. 34.75 bu .35 .50 lb ., $38 \frac{1}{6} \mathrm{lb}$., $54 \frac{2}{\frac{2}{\mathrm{~g}} \mathrm{lb} \text {. } 36.3 \frac{3}{4} \mathrm{bu} ., 8 \mathrm{bu} .,}$
$16 \frac{1}{4} \mathrm{bu} .3 \approx .3,25 . \quad 38.3 \frac{1}{2} \frac{9}{7} . \quad 39.56 \frac{5}{8} . \quad$ 40. $1200_{9}^{9}, 113 \frac{1}{3}, 56{ }_{3}^{2}, 145_{15}^{1}$. 41 \$2100. 42. $12 \frac{2}{3} \frac{0}{2}$. 43. $16 \frac{2}{3}, 25 \frac{25}{2}, 288_{7}^{673} . \quad$ 44. $68,133 \frac{1}{3}, 335 \frac{1}{1} \frac{1}{5}, 200$. $4583 \frac{1}{3}, 60_{4}^{4}$. 46. $\$ 10516 \frac{2}{2}$. 47. $\frac{21}{128}, 18$. 48. $4 \frac{1}{3}, \frac{3}{5} \frac{807}{50} . ~ 50.1 \frac{1}{4} . ~ 51$. $\frac{23}{27}$. 52. $5 \frac{11}{15}$. $53.1 \frac{3}{13}$. 54. $3 \frac{3}{5}$. 55. $\frac{45}{25} \frac{1}{4}$. 56. $1 \frac{5}{19}$. 5\%. $1 \frac{43}{77}$.

Avt, 122. 1. 1400 . 2. $118_{\frac{4}{19}, ~}^{780 \frac{13}{13} \text {. }}$ 3. $\$ 5376 \frac{7}{10}, \$ 4032 \frac{1}{40}$. $\$ 2016 \frac{2}{8}, \$ 2150 \frac{17}{25}$. 4. 89_{7}^{2} A. 5. $\frac{1}{5} \frac{5}{8} . \quad$ 6. $2{ }_{40}^{9}$. 7. $12 \frac{1}{2}$ da. 8. 1. 9. $2 \frac{7}{16}, 4 \frac{11}{16}, 7 \frac{1}{2} . \quad 10 . \frac{81}{196} . \quad$ 11. $\$ 28662 \frac{2}{3}$. $12 . \$ 13.40 .13 . \mathrm{A}, \$ 175 ; \mathrm{B}$, $\$ 200$. $14 \$ 4000, \$ 12000$. 15. $9 \frac{1}{2}, 4_{4}^{3}$. 16. $33_{7}^{4}, 20 \frac{1}{7}$. 17. $\$ 3192.18$. $\$ 54$. 19. $90.20 . \$ 1100$. 21. 80. 22. 21. 23. 2967, $8 \frac{59}{72}, 204 \frac{37}{72}$, $3 \frac{50}{127}$. 24. $\$ 17491.50$. 25. 5. 26. Gained 25 cts . 27. $\$ 948 \frac{1}{8}$. 2S. 21. 29. \$392. 30. $6 \frac{223}{3} \frac{25}{5}$. 31. $\frac{7}{22}$. 32. $\frac{1}{2}$.

Avt. 215. $1.57500 \mathrm{cts} ., 8432 \mathrm{cts}$. 2. $\$ 26.81, \$ 68.25 .3 .4875 \mathrm{~m}$., 926 m . 4. $\$ 8.42,78.5 \mathrm{cts}$. 5. $\$ 50.256,650 \mathrm{~m} .6 .3 .5000$, .2250, 4.0015. \%. . $40000, .00280, .00156$. 8. 42.04000, 125.12600, .00360, .10300, 5.00306. 9. .60034, 325.06000, 4.00074, .08610, 25.80000. 11. $\frac{1}{25} . \quad 12 . \frac{3}{25} \quad 13 . \frac{4}{5} . \quad 14 \cdot \frac{9}{20} . \quad 15 . \frac{12}{25} . \quad 16 . \frac{16}{25} . \quad 17 . \frac{7}{20} .18 . \frac{1}{8} .19$. $\frac{17}{250}$. 20. $\$ \frac{3}{8}$. 21. $\$ \frac{7}{8}$. 22. $\$ \frac{3}{16}$. 23. $\frac{13}{2000}$. 24. $\frac{15}{16}$. 25. $\frac{5}{16}$. 26 . $\frac{3}{1250}$. 27. $\frac{1}{3125}$. 28. $\frac{19}{3}$. 29. $\frac{3}{5000}$. 30. $\frac{11}{16}$. 32. $\$ \frac{1}{16}, \$ \frac{1}{3}$. 33. $\$ \frac{1}{12}$,
 39. $\frac{1}{6}$. $40 . \frac{1}{7}$. 42. 15_{41}^{31}. 43. $\$ 87 \frac{1}{9}$. 44. $150 \frac{3}{8}, 9 \frac{31}{4000}$. 45. $705_{1 \frac{5}{2}}^{2}, 26 \frac{1}{18}$, 46. $125_{\frac{1}{125}}$. 47. $8 \frac{1}{12}$.

Avt. 216. 2. .625, .875. 3. .0625, .1875. 4. .025, .0625. 5. .08, .7. 6. .6875, .075. \%. .56, .9375. 8. .65625, .132. 9. .7578125, .3216 10. .376, .03375. 11. .0728, .05078125. 12. .685, . 005625. 13. . 8015 , . 60325.

Art. 221. 1. .32, .1171875, .00352, . $666, .013671875$. 2. ..,.$\dot{4}$, $\dot{2} 9 \dot{7}, . \dot{9} 512 \dot{1}, . \dot{6} 3 \dot{5}$, . $\dot{3} 3 \dot{4} . \quad$ 3. $.8 \dot{3}, .4 \dot{6}, .13 \dot{8}, .45 \dot{3}, .1 \dot{7} \dot{8}$

Art. 222. 2. $\frac{1}{3}, \frac{7}{9}$. 3. $\frac{1}{33}, \frac{3}{11}$. 4. $\frac{81}{9}, \frac{5}{11}$. 5. $\frac{2}{3}, \frac{1}{98}$. 6. $\frac{5}{111}, \frac{27}{37}$. $\begin{array}{llllll}\text { 7. } \frac{30}{37}, \frac{1}{3} \frac{2}{7} & \text { 8. } \frac{42}{101} \cdot & \text { 9. } \frac{39}{41} \text {. 12. } \frac{7}{90}, \frac{103}{180} \text {. } & \text { 13. } \frac{1}{12}, 5 \frac{5}{18} . & 14 . \frac{17}{55}, 4 \frac{17}{45} .\end{array}$
 22. $\frac{1}{3} \frac{8}{7}$. 23. $\frac{1}{88}$.

Art. 225. 13. 39.4024, 24.7224. 14. 191.85156., 159.84844. 15. 4.060514, 4.059886. 16. 2484.729, 515.287. 17. 508.75 tons, 291.25 tons. 18. $145.825 \mathrm{rd} ., 95.775 \mathrm{rd}$. 19. $\$ 238$, $\$ 137.75$. \% 21. $\$ 335.9375, \$ 264.0625$. 22. 227.25, 222.75. 23. $\$ 1700.875, \$ 699.125$. 24. 92.4, 75.6. 25. $10.000006,9.999994$. 26. .2853, .2397. 27. \$6.27, $\$ 5.13$. 28. . 671 .54. 29. 6, 3. 30. $\$ 1, \$.25$. 31. $\$ 67.875, \$ 12.125$. 32. .886 , .713. 33. $\$ 58.3625$. 34. 199.0198. 35. $\$ 49.15$. 36. 2.46. 37. \$361.2175. 38. .773. 39. \$.7525.

Art. 22S. 36. .0093. 37. .0008892. 38. 3870. 39. 256.5. 40. \$864506.25. 41. .1027875. 4. \$.00255. 43. .210125. 44. 224. 45. . 000081 . 46. $\$ 1071.25, \$ 107.13, \$ 10712.50, \$ 1606.88$. 47. $\$ 62.4 .02, \$ 9226.50, \$ 13932.02, \$ 24604.48 .14,22.40 . \$ 22.60 .50$. $\$ 571.88, \$ 506.25$. $51 . \$ 1245.56, \$ 1109.06$. 52. $\$ 34.36, \$ 28.63$. 53. $\$ 150.61, \$ 138.80$. $54 . \$ 387.50, \$ 337.50 . \quad 55 . \$ 2875, \$ 3100.56$. $\$ 506.40 . \quad 57 . \$ 9375, \$ 6875 . \quad 58 . \$ 62.50 . \quad 59 . \$ 178.13 . \quad 60 . \$ 6963.84$. 61. $\$.09, \$.06 \frac{1}{2}$. 62. $\$ 2.12 \frac{1}{2}, \$ 1.38$. 63. $\$ 33.26, \$ 26.75$. 64. $\$ 12$, $\$ 12.50$. $65 . \$ 18$. ${ }^{3} . \quad 66 . \$ 66.44 . \quad 67 . \$ 1.50, \$ 2.88 . \quad 68 . \$ 30.66, \$ 40.88$. 69. \$87.21. 70. 64, 320. 71. 7.28, 7.904. 72. 282.18. 73. \$2.06, \$9.63. 74. \$2372.20. 75. 46. \%6. 311.65. 77. .065.

Avt. 230. 2. $\$ 25.53$. 3. $\$ 49.70$. 4. $\$ 10.43$. 5. $\$ 2.45, \$ 2.23^{\text {s }}$ \$3.79, \$3.23. 6. \$146.25, \$175.78. $\quad 7 . \$ 8.63, \$ 18.92$.

Art. 235. 1. \$91.76. 2. \$105.95. 3. \$712.32. 4. \$2380.77.万. $\$ 55.13 . \quad 6 . \$ 42.38 . \quad 7 . \$ 3455.40$. 8. $\$ 21.37$. 9. $\$ 82.86$.

Art. 236. 1. 36. 2. 57.6, 86.4, 100.8, 201.6. 3. \$27.66, \$.92. 4. $\$ 26.25 . \quad 5 . \$ 52.59$. 6. $\$ 18.75$. \%. $\$ 11.27 . \quad$ 8. \$2.40. 9. $\$ 31.04$. 10. \$268.13. 11. $\$ 237.67 .12 . \quad \$ 17.65 .13 . \quad \$ 18.75$. 14. \$273.28. 15. $\$ 3840.84$. 16. 3432,132 . 17. $\$ 2.50$. 18. 127. 19. 62.5 tons; $\$ 289.06$. 20. $\$ 15000$. 21. 219. 22. $\$ 27.56$. 23. $\$ 198.53$. 24. $342 \frac{9}{14}$ sacks. 25. $\$ 1543.75$. 26. \$3403.05. 27. \$1312.50. 28. .0002938. 29. 41.3337.

Art. 286. 2. 85590 min . 3. 19561 oz . 4. 355 in . 5. 477 gi . 6. 3680 in . \%. 2349d. 8. 5174 pwt . 9. 26660 1. 10. gr. 20447. 11. $10807 \frac{1}{3}$ yd. $12.5445000 \mathrm{sq} . \mathrm{ft} .13 .1156 \mathrm{gi} .14 .284726 \mathrm{lb}$. 15.1606 oz. 16. 16575 l .17 .1452 .36 mi . 18.1872 in .19 .149 doz. 20. $2624 \mathrm{sq} . \mathrm{rd}$. 21. 311040 cu . in. 22. $1792 \mathrm{cu} . \mathrm{ft} .23 .888 \mathrm{qt}$. 24. 6105 mi .25. 17520 hr . 26.245000 cts. 27.23760 in . 28. f 36784 . 29. 213840 cu.in. 30. 11092 yd . 31. 8624 lb . 32. 114 qr . 33. 50 eighths. 34. $59066^{\prime \prime}$. 35. 520 qr 48. $\$ 218.99$ 49. $\$ 80.78$. $50 . \$ 73$. 51. $\$ 28.95 . \quad 52$. $\$ 17.89$. $53 . \quad \$ 132.86 . \quad 54 . \quad \$ 1917 . \quad 55.610 \mathrm{bbl} . \quad 56 . \$ 64.80 . \quad 5 \%$. 288 pp . $\quad 58 . \$ 497.28 . \quad 59.7273 \frac{5}{11}$ sacks. 60. $\$ 25.20$. 61. $\$ 51.15$, $\$ 52.31$. 62. $\$ 48.43$. $63 . \$ 26.95, \$ 33.69$. $64 . \$ 132 . \quad 65 . \$ 440, \$ 6.48$. 66. $\$ 7.68$.

Art. 289. 26. \$7. 27. \$3484.80. 28. \$60. 29. \$180. 30. \$210. 31.2 bu. 1 pk. 6 qt. 1 pt. 32. 45 A . 33. $\$ 31.25$. 34. 7 wk . 1 da. 17 hr .30 min .35 .270 reams 16 qr .16 sheets.

Art. 291. 2. 7 oz .10 pwt . 3. 2 ft .3 in . 4. 6s. 6d. 5. 2 rd . 5 l. $4 \frac{4}{5}$ in. 6.1 sq. ft. 18 sq. in. 7.5 sp. $4 \frac{1}{2}$ in. 8.3 da. 2 hr. 40 min
9. 3 gal. 3 qt. 1 pt. 2 gi. 10. 3832 . 11. $16 \mathrm{sec} .12 .2 \mathrm{pk} .6 \mathrm{qt}$.15 pt . 13. $8 \frac{4}{5}$ oz. 14. 3 qt. 1 pt . 15. 15 sheets. 16. $1 \mathrm{ch} .1 \mathrm{rd} .3 \mathrm{l} . \quad 1 \%$. 6 doz. 10_{7}^{2} units. $18.60 \mathrm{ch} .2 \mathrm{rd} .10 \mathrm{l} .19 .2 \mathrm{cu} . \mathrm{ft} .89 .856 \mathrm{cu} . \mathrm{in}$. 20. 16 gal. 3 qt. 1 pt. $21.2 \mathrm{lb} .13 \frac{5}{7} \mathrm{oz} . \quad 22.48 \mathrm{lb} .23 .24 \mathrm{lb} .24 \mathrm{p}$ $3 \mathrm{~cd} . \mathrm{ft} .8 \mathrm{cu} . \mathrm{ft} .25 .28 \mathrm{ch} .3 \mathrm{rd} .5$ l. 26. $14 \mathrm{lb} .11 .2 \mathrm{oz} .2 \% .48^{\circ} 36^{\prime}$. 28. 4 cwt. 33 lb .8 oz.

Art. 293. 3. $\frac{5}{8}$. 4. $\frac{1039}{2500}$. 5. $\frac{9}{10}$. 6. $\frac{4}{9}$. 7. $\frac{1}{4}$. 8. $\frac{6}{13} . \quad$ 9. $\frac{3}{10}$

 $\frac{1467}{1760}$. 26. $\frac{125}{1182}$. 27. $\frac{7}{10}$. 28. $\frac{7}{16}$.

Art. 295. 3. $28 \mathrm{~T} .16 \mathrm{cwt}$.69 lb .6 oz . 4. 16 wk .2 da .21 hr. $7 \mathrm{~min} .12 \mathrm{sec} . \quad 5.16 \mathrm{Cd} .3 \mathrm{~cd} . \mathrm{ft} .7 \mathrm{cu} . \mathrm{ft} .6 .5 \mathrm{hhd} .6$ gal. 2 qt 7. 75 A .80 P .8 .2809 units. 9. 24 lb .4 oz .1 pwt. 12 gr 10. 3 da .7 hr .58 min .15 sec .11 .7 T. 65 lb .10 oz .12. 五 1978 30 Đ2 gr 15.13 .5 T .9 cwt. 24 lb . 14. $1 \mathrm{mi} .287 \mathrm{rd} .15 \mathrm{ft} .9 \frac{3}{4} . \mathrm{in}$. 15. $11 \mathrm{bu} .3 \mathrm{pk} .4 \mathrm{qt} .1 \frac{8}{15} \mathrm{pt}$. 16. $\$ 80.78$. 17. $\$ 293.80$. 18. $\$ 107.25$.

Art. 296. 3. 2 T. 8 cwt .8 lb .10 oz. 4. 223 bu .2 pk .6 qt. 5. 17 gal. 2 qt. 1 pt. 6. 9 mi .29 rd .14 ft . 7. 24 A .9 sq. ch. 7 P. 8. 4 T. 13 cwt. $40 \mathrm{lb} . \quad 9.4$ da. $5 \mathrm{hr} .48 \mathrm{~min} . \quad$ 10. 2 lb .7 oz .6 pwt .
 14 sec. 14. $17^{\circ} 50^{\prime} 22^{\prime \prime}$. $15.6 \mathrm{ft} .10 \frac{1}{2} \mathrm{in}$. 16. 3 sq. ch. 12 P. 100 sq. I. 17. 2 pk. 3 qt. $\frac{1}{5}$ pt. 18.6 doz. 10 units. 19. 4 bbl. 11 gal. 1 qt. 20. $£ 71$ 15s. 11d. 2 far. 21. 39 sq. rd. 14 sq. yd. $5 \mathrm{sq} . \mathrm{ft} .84 \mathrm{sq}$. in. 22. $54 \mathrm{bu} .3 \mathrm{pk} .4 \mathrm{qt}$. 23. 4 doz. 2 pens. 24. $38 \mathrm{Cd} .7 \mathrm{~cd} . \mathrm{ft} .8 \mathrm{cu} . \mathrm{ft}$.

Art. 29\%. 2. 12 yr .19 da . 3. 11 yr .4 mo .19 da 4. 4 yr . $4 \mathrm{mo} .15 \mathrm{da} . \quad 5.3 \mathrm{yr} .5 \mathrm{mo} .24 \mathrm{da} .15 \mathrm{hr} .6 .1 \mathrm{yr} .11 \mathrm{mo} .17 \mathrm{da} . \%$ 3 yr. 11 mo .28 da. 8. 4 yr. 3 mo .22 da. 10. 2 yr .10 mo .6 da. 11. 1 yr. 9 mo .2 da. 6 hr . 12.12 yr .6 mo .1 da .

Art. 29S. 2. 34 lb .3 oz., 39 lb .11 oz .10 pwt., 45 lb .8 oz. 3. 60 T. 16 cwt. 84 lb ., 68 T. 8 cwt. 94 lb .8 oz., 53 T. 4 cwt. 73 lb .8 oz. 4. 464 bu .1 pk . 5. 7 lb .3 oz .3 pwt . 6. 510 A . 7. 172 T .7 cwt .4 lb . 8. 2 T. $10 \mathrm{cwt} .24 \mathrm{lb} . ; \$ 452.16$. 9. 94 A . 10. 5 mi .11 .48 bu .3 pk. 12. 223 lb .2 oz. 8 pwt. 13.7 T. 19 cwt .12 lb .14 .14 wk .2 da .14 hr $9 \mathrm{~min} .36 \mathrm{sec} . \quad 15.11 \mathrm{cwt} .40 \mathrm{lb} . \quad 16.69 \mathrm{hhd} .23$ gal. $2 \mathrm{qt} .1 \mathrm{pt} . \quad 17$ 145 wk .4 da .4 hr .48 min . 18. 26 bu .4 qt .

Art. 299. 2. $3 \mathrm{lb} .11 \mathrm{oz} .8 \mathrm{pwt} .4 \frac{1}{4} \mathrm{gr} ., 2 \mathrm{lb} .7 \mathrm{oz} .12 \mathrm{pwt} .25 \mathrm{gr}_{\mathrm{c}_{\mathrm{s}}}$ $1 \mathrm{lb} .11 \mathrm{oz} .14 \mathrm{pwt} .2 \frac{1}{8} \mathrm{gr}$. 3. 1 T. $4 \mathrm{cwt} .4 \mathrm{lb} .15 \mathrm{oz} ., 8 \mathrm{cwt} .1 \mathrm{lb}$.
 34 Đ1 gr. 14 $\frac{1}{2}$, tb $53934 \mathrm{gr} .11 \frac{1}{2}$. 5. $55 \mathrm{gal} .2 \mathrm{qt}$.1 pt , 46 gal. 1 qt. $3 \frac{1}{3}$ gi. 6. 6 hhd. 13 gal. 2 q.t. $1 \frac{3}{5}$ gi. 7. $£ 910 \mathrm{~s} .8$ d. 2 far. 8.

28 A .12 P . 9. $79 \mathrm{Cd} .3 \mathrm{~cd} . \mathrm{ft} .4 \mathrm{cu} . \mathrm{ft}$. 10. $2^{\circ} 57^{\prime} 34^{\prime \prime}$. 11.11 mi . $220 \mathrm{rd} .1 \mathrm{ft} .6 \mathrm{in} .12 .5 \mathrm{cu} . \mathrm{yd} .22 \mathrm{cu} . \mathrm{ft}$. 13.1 wk .23 hr .43 min. $38_{1 \mathrm{~T}}^{2}$ sec. $14.2 \mathrm{ft} .3 \mathrm{in} .15 . £ 42 \mathrm{~s} .4 \mathrm{~d} . \quad 16.1 \mathrm{oz} .17$ pwt. 4 gr .17. 85 A 3 sq. ch. 5 P. $208_{3}^{\frac{1}{3}}$ sq. 1. 1S. 3 gal. 3 qt. 39 gi., 2 gal. 3 qt. 1 pt. $\frac{2}{3}$ gi., 2 gal. 1 qt. $2 \frac{2}{15}$ gi. 19. $5 \mathrm{cu} . \mathrm{yd}$. 20. 5. 21.15 da., $12 \frac{6}{7}$ da.

Art. 303. 3. $10 \mathrm{~min} .45 \frac{1}{5} \mathrm{sec}$. 4. $3 \mathrm{hr} .13 \mathrm{~min} .42 \frac{1}{15} \mathrm{sec} .5$. $5 \mathrm{hr} .58 \mathrm{~min} .5_{5}^{4} \mathrm{sec} .6 .4 \mathrm{hr} .55 \mathrm{~min} .36 \frac{3}{5}$ sec. 7.11 hr .17 min . $45_{\frac{4}{15}}^{4}$ sec. A. M. $8.8 \mathrm{hr} .58 \mathrm{~min} .33 \frac{2}{2}$ sec. A. M. 9.10 hr .31 min . $45_{\frac{7}{15}}^{7}$ sec. А. м. $\quad 10.5$ hr. $17 \mathrm{~min} .32 \frac{2}{3}$ sec. P. м. 11.5 hr .7 min . $52_{15}^{\frac{1}{5}}$ sec. P. M. $12.52 \mathrm{~min} .13_{15}^{14}$ sec. A. M.

Art. 304. 2. $71^{\circ} 30^{\prime}$. 8. $21^{\circ} 15^{\prime}$. 4. $36^{\circ} 22^{\prime} 30^{\prime \prime}$. 5. $47^{\circ} 36^{\prime} 15^{\prime \prime}$. 6. $20^{\circ} \mathrm{W}$. 7. $14^{\circ} \mathrm{E}$. 8. $37^{\circ} 30^{\prime} \mathrm{E}$. 9. $48^{\circ} 45^{\prime} \mathrm{W}$.

Art. 30.5. 1. $\$ 80.12$. 2. 72 centals, 56_{4}^{1} centals, $48.913+$ centals. 3. 518_{5}^{2} bu., 322 bu. $4.6 \frac{6}{19}$ bbl. 5. 2171.624 mi . 6. $\$ 6.91$. \%. $\$ 21.99$. 8. $\$ 347.90$. 9. $3 \mathrm{hr} .5 \mathrm{~min} .17 \frac{1}{5} \mathrm{sec}$. Р. м., $2 \mathrm{hr} .55 \mathrm{~min} .36 \frac{3}{5} \mathrm{sec} . \mathrm{P}$. м., $8 \mathrm{hr} .55 \mathrm{~min} .56{ }_{5}^{3} \mathrm{sec}$. A. M., 8 hr .19 min .30 sec A. м. 10. $\$ 230.11$. $£ 3084 \mathrm{~s} .7 \mathrm{~d}$. $\frac{53}{97} \frac{00}{3}$ far. 12. $\$ 162.19$. 13. 1 wk .3 da. 12 hr .14. 1602 volumes. 15. $2205 \mathrm{bu} .3 \mathrm{pk} .16 . \$ 574.42 .17 .1 \mathrm{lb} .3 \mathrm{oz}$. 8 pwt. $21 \mathrm{gr} . \quad 18 . \$ 551.70 .19 .279 \mathrm{rd} 2 yd .2 ft .3 in .20 .14 wk.$. 1 da. 22 hr .26 min .24 sec. $21.29 \mathrm{gal} .3 \mathrm{qt} .1 \mathrm{pt} .3 \frac{7}{13}$ gi. 22. $5 \mathrm{qt} . \frac{38}{7} 8 \mathrm{pt} . \quad 23.6 \mathrm{Cd} .3 \mathrm{~cd} . \mathrm{ft} .1 \mathrm{cu} . \mathrm{ft} .1036 \frac{4}{5} \mathrm{cu} . \mathrm{in}$. 24. $7 \mathrm{sq} . \mathrm{ch} .8 \mathrm{P}$. 25. $\$ 30000$. 26. $\$ 650$. 27. $\$ 691.20$. 28. $\$ 24.38$. 29. $\$ 30.75 .30$. $\$ 37.50$. 31. $\$ 2580.48$. 32. $\$ 180$. i3. $\$ 112.50$. 34. $\$ 80640$. 35. $\$ 420$. 36. $\$ 5.38$. 37. $\$ 23277.38 . \quad 38 . \$ 93.71$. 39. $\$ 560$. 40. $\$ 67$. 41. $\$ 328.32 .42 . \$ 225.14 . \quad$ 43. $\$ 60$. 44. $\$ 87040$. 45. $\$ 360.46$. $\$ 53.57 .47 . \$ 65.28$. 48. $\$ 86.40$. 49. $\$ 1.42$. $50 . \$ 62.15$. 51. $\$ 1377$. 52. \$3.75. 53. \$108. 54. \$11.33.

Art. 3 12. 1. 3 sq. ft. 36 sq. in. 2. 3 sq. rd. 7 sq. yd. 36 sq. in. 3. 17 sq. yd. 3 sq. ft. 36 sq. in. 4. 2 sq. rd. 3 sq. yd. 8 sq. ft. 90 sq. in. 5. 4 A. 2 sq. ch. 12 sq. rd. 6. 25 sq. yd. 4 sq. ft. 72 sq. in. 7. 66 sq. ft. 8. 184 sq. rd. 14 sq. yd. 9. 65 sq. yd. 4 sq. ft. 10. $18 \frac{1}{2} \mathrm{ft} .11 .37 \mathrm{ft}$. 12. $33 \mathrm{yd} . ; \$ 29.70$. 13. $123 \frac{3}{7} \mathrm{yd} . ; \$ 185.14$. 14. $24_{1 \frac{12}{5} \frac{2}{5}}^{\mathrm{yd}}$.; \$45.82. 15. $45 \frac{1}{3}$ yd.; $\$ 96.33$. 16. $103 \frac{17}{81}$ yd.; $\$ 283.83$. 17. $\$ 64.60$. 18. $\$ 218.16, \$ 76.44$. 19. 450 stones; $\$ 312.50$. 20. 1050 A .21 .24 ch. 1 rd. 2 1. $1.9+\mathrm{in}$. 22. $\frac{5}{8}$. 23. 32 rd. 24. 105 A. 6 sq. ch. 4 sq. rd. 25. 600. 26. $40 \frac{2}{3}$. 27. $10 \frac{2}{7} \mathrm{yd}$., $12 \frac{6}{7} \mathrm{yd}$. 2S. $\$ 157.50$. 29. $\$ 30.88$. 30. $89 \mathrm{rd} ., 210 \mathrm{rd}$.

Art. 321. 1. $48 \mathrm{cu} . \mathrm{ft}$. 2. $85 \frac{1}{2} \mathrm{cu} . \mathrm{ft}$. 3. $390 \mathrm{cu} . \mathrm{yd} .4$. $2850 \mathrm{cu} . \mathrm{ft} . \quad$ 5. $175 \frac{25}{3} \mathrm{cu} . \mathrm{ft} .6 .195 \mathrm{cu} . \mathrm{in} .7 .4050 \mathrm{cu} . \mathrm{ft} . \mathcal{S}^{2}$ $380 \frac{1}{4} \mathrm{cu} . \mathrm{ft}$. 9. $2 \mathrm{cu} . \mathrm{yd} .8 \mathrm{cu} . \mathrm{ft} .864 \mathrm{cu}$. in. 10. $6 \mathrm{cu} . \mathrm{yd} .4 \mathrm{cu} . \mathrm{ft}$. $648 \mathrm{cu} . \mathrm{in} .11 .3 \mathrm{ft} .12 .8 \mathrm{ft} .6 \mathrm{in} .13 . \frac{1}{4} \mathrm{ft}$. 14. $\$ 173.33$.
15. 284_{33}^{4} Perch. 16. $111 \frac{3}{8} \mathrm{cu} . \mathrm{ft}$. 17. 133 Cd . 18. $\$ 3.94$, $\$ 5.25$. 19. $190 \frac{10}{11}$ Perch. 20. $\$ 380.24$. 21. 22320. 22. $76440 ; \$ 573.30$.

Art. 322. 3. $18 \frac{2}{3}$ board ft. 4. $22 \frac{1}{2}$ board ft. 5. 35 board $\mathrm{ft}_{\text {t }}$ 6. $34 \frac{1}{2}$ board ft. 7.33 board ft. 8. 17 board ft. 9. 52 board ft. 10. 19 board ft. 11. 44 board ft. 12. $19 \frac{1}{2}$ board ft. 13. $\$ 11.55$. 14. $\$ 5.04$. 15. $\$ 7.29$. $16 . \$ 201.60$. $17.92 \frac{4}{9}$ sq. ft. $18 . \$ 45.57$. 19. $\$ 23.89$.

Art. 3श4. 1. $6218 \frac{1}{10} \mathrm{cu} . \operatorname{in} .2 .1866 \mathrm{cu} . \mathrm{ft} .1182 \mathrm{cu} . \mathrm{in} .3$. 560 cu . ft. $1621.815 \mathrm{cu} . \mathrm{in} .4 .505 \mathrm{cu} . \mathrm{ft} .540 \mathrm{cu} . \mathrm{in} .5 .631 \mathrm{cu} . \mathrm{ft}$. $1107 \mathrm{cu} . \mathrm{in} . \quad 6.467 .2 \mathrm{cu} . \mathrm{ft} .7 .72 \mathrm{cu} . \mathrm{ft} .307 .2 \mathrm{cu} . \mathrm{in} .8 .32 \mathrm{hhd}$. 9. 8 bbl. 10. $241.0691+\mathrm{bu} .11 .184 \mathrm{cu} . \mathrm{ft} .310 .16 \mathrm{cu} . \mathrm{in} .12$. 325.443 bu . barley ; 260.354 bu . potatoes. 13. $718 \frac{10}{77}$ gal.; 3 T. 14. $322.26+$ bu. 15. $\$ 20.68$, gain. 16. 6.76% bu.+. 17. 156.9375 T. 18. $\$ 983.56$. 19. $37.636+\mathrm{bbl}$. 20. $942_{\frac{6}{11}} \mathrm{gal}$; $101.249 \mathrm{bu} .+$. 21. $68.7047 \mathrm{bu} .+$ corn; $54.9638 \mathrm{bu} .+$ apples. $22.8 \mathrm{ft} .11 .52+\mathrm{in} .23$. $\$ 14.25$. 24. $\$ 134.37 \frac{1}{2}$. 25. $198 \frac{33}{64} \mathrm{Cd}$; $\$ 694.80$.

Art. 33\%. $10.30 \mathrm{bu} . ; \$ 2.25 ; 8.25 \mathrm{ft}$; $12.48 \mathrm{~T} . \quad 11 . \$ 34.65$. 12. 12 T., 8.1 T., 6.75 T. 13. $\$ 7968.75$. 14. $\$ 32.10, \$ 609.90$. 15. 254.8 lb . 16. $\$ 2400$. 17. $\$ 1139.06$. 18. $\frac{25}{64}$ left; $\$ 42666.66 \frac{2}{3}$. 19. $583 \frac{1}{3}$ bu. 20. $\$ 1881.25, \$ 1618.75$.

Art. 339. 12. 35\%. 13. $15 \frac{1}{2} \%$. 14. $62 \frac{1}{2} \% . \quad 15.25 \% .16$. 25%. 17.44%. $18.62 \frac{1}{2} \%$.

Art. 341. 10. 3200 bbl . 11. $\$ 10500$. 12. $\$ 29600$. 13. 2000 bu. 14. $\$ 1371.43$. 15.213 A .120 sq. rd. 16. $\$ 50000$. $17 . \$ 4290$.

Art. 343. 3. $125.4 .1256 .593 .75 \mathrm{mi} .6 .800 \mathrm{mi} .7 . \$ 5 \%$. 8. $\$ 12000$. 9. $\$ 160$ loss. 10. $\$.0315+$. 11. $\$ 3.68$. 12. $\$ 7.50$.

Art. 344. 1. $\$ 534.19$. 2. $\$ 5.56$. 3. $\$ 18.37$, $\$ 131.63 .4$. $5 \frac{61}{100} \%, 1 \%$. 5. $11 \frac{1}{2} \frac{4}{5} \%, 30 \%$. 6. $\$ 3.25$. 7. $\$ 3.50$.

Avt. 352. 2. $\$ 150$ gain, $\$ 900$. 3. $\$ 54$ loss, $\$ 396$. 4. $\$ 1.05$ profit, $\$ 5.25$. 5. $\frac{3}{4}$ ct. loss, $29 \frac{1}{4} \mathrm{cts}$. 6. $\$ 1.14$ profit, $\$ 7.98$. 7. $\$ 3.41$; $\$ 2.585$. 8. 9 cts., $9 \frac{1}{5} \mathrm{cts}$. 9. $\$ 3.30, \$ 3.55 \frac{1}{2}, \$ 3.93 \frac{3}{4}$. 10.0 .

Art. 353. 2. 162 $\%$ gain. 3. $14 \frac{2}{7} \%$ loss. 4. $33 \frac{1}{3} \%$ gain. 5. 20% gain. 6.10% loss. $7.16 \frac{2}{3} \%$ gain. $8.66 \frac{2}{3} \%$ gain. 9.30% gain. 10. $37 \frac{1}{2} \%$. 11. $66 \frac{2}{3} \%$. $12.33 \frac{1}{3} \%$. 13.44%.

Art. 354. 2. $\$ 4.70$. 3. $\$ 1$. 4. \$.68. 5. $\$ 5 . \quad$ 6. $\$ 22.50, \$ 18$. 8. $\$ 3.50$. 9. $\$ 1.68$. 10. $\$ 282.35$. 11. $\$ 5$. 12. $\$.75$. 13. $\$ 18750$. 14. $\$.75$. 15. $\$.12 \frac{1}{2} . \quad 1 \% . \$ 1.47 . \quad 18.15 \mathrm{cts} . \quad 19 . \$ 75 . \quad 20 . \$ 1.066$ 21. $\$ 4.23$. 22. $\$ 4.96$.

Arts. 360, 361. 2. $\$ 34.20$. 3. $\$ 9.30$. 4. $\$ 52.50$. 5. \$551.78. 6. \$28.35. \%. $\$ 907.20$. 8. $\$ 4729.35$. 2. $2 \frac{1}{2} \%$. 3. $\frac{1}{2} \%$. 4. $4 \frac{1}{2} \% \quad 5$. $\frac{1}{3} \%$. $6.3_{14}^{7} \frac{7}{2} \%$. $\%, 1 \frac{1}{2} \%$.

Aits. 362, 363. 1. \$14400. 2. \$19200. 3. \$1226. 4. \$1285. 5. $\$ 4000.6 . \$ 2463.02 .7 . \$ 9000$. S. $\$ 2550$. 9. $\$ 5340 . \quad 10.2840$ bu. $\$ 5458.12 \frac{1}{2}$. 1. $\$ 560$. 2. $\$ 2750$. 3. $\$ 4680$. 4. $\$ 6419.75$. 5.5750 lb . c. 500 shares. 7. 3200 yds .

Art. 369. 1. $\$ 72.2 . \$ 40.50, \$ 30.75$. 3. $\$ 65.70$. 4. $\$ 8.75$, $\$ 22.50$. 5. \$210. 6. \$75. 7. \$100.63.

Arts. $370,3 \% 1 . \quad 1.1 \frac{1}{2} \%$. 2. $4 \frac{1}{2} \%$. 3. $\frac{3}{8} \%$. 4. $\frac{3}{4} \%$. 5. $1 \frac{1}{4} \%$. 6. $5 \frac{1}{2} \%$. 7. $1 \frac{3}{4} \%$. 1. $\$ 14000$. 2. $\$ 13600$. 3. $\$ 5276$. 4. $\$ 24500$. 5. $\$ 10.15 \frac{5}{5} \frac{7}{6}$ per bbl. 6. $\$ 28000$. 7. $\$ 5025.64$. 8. $\$ 4010$.

Art. 3\%9. 1. $\$ 4025 . \quad$ 2. $\$ 263.50$. 3. $1 \frac{1}{5} \%$. 4. 3 mills, $\$ 12$. 5. $\$ 56000 . \quad$ 6. $\$ 7100 . \quad$ 7. $\$ 2800$. S. $\$ 2500000$. - 10. $\$ 18.88 . \quad 11$. \$36.69.

Art. 390. 2. $\$ 251.25 . \quad$ 3. $\$ 162 . \quad$ 4. $\$ 3037.50$. 5. $\$ 1612.80$. 6. $\$ 44.10$. \%. $\$ 261.49 .8 . \$ 1640$. 9. $\$ 2760.92$, $\$ 7659.22$. $10.1_{133}^{43} \%$. 11. $3 \mathrm{~s} .8 \mathrm{~d} .2 .8+$ far. 12. 40 gal. 13. 8%. 14. $\$ 1630$.

Arts. 400, 401. 2. $\$ 3726$. 3. $\$ 3937.50, \$ 4685.63$. 4. $\$ 4400$. 5. \$288. 2. 12. 3. 30. 4. 24. 6. 1000.

Arts. 402, 403. 2. \$14625. 3. \$42000. 2. \$1280. 3. \$192.771.
Arts. 404, 405. 2. $8 \%, 6 \frac{3}{13} \%, 5 \frac{5}{7} \%$. 3. $11 \frac{13}{13} \%$. 4. Neither, N. Y. 6 's at 84 . $\quad 5.5 \frac{1}{21} \frac{5}{7} \%$, 2. $\$ 75, \$ 60$. 3. $\$ 133 \frac{1}{3}, \$ 114 \frac{2}{7}, \$ 80, \$ 66 \frac{2}{3}$. 4. $\$ 83 \frac{1}{3}$. 5. $\$ 64 \frac{2}{7}$.

Art. 406 . 1. 2 hr .35 min .18 sec .2 .78 A .5 sq. ch. 3.2 P .; 1 T. 6 cwt .26 lb . 3. $8 \frac{1}{3} \%$. 4. $\$ 1500$. $\quad 5.25 \%$. 6. $\$ 6153.25$. 7. $\$ 1.19 . \quad 8.1 \frac{1}{4} \%$. $9 . \$ 8290.16 . \quad 10 . \$ 3750$. 11. $\$ 15490 . \quad$ 12. $\$ 640$. 13. 2250. 14. $78 \frac{13}{\frac{3}{4}} \%$. 15. $89 \frac{2}{7} \%$. 16. Nothing. 17. $\$ 1500, \$ 1690$, $\$ 4000$. 18. $\$ 4640$. 19. 124. 20. $\$ 118.75$. 21. $1_{2073}^{927} \%$. 22. 400 bbl . 23. $\$ 1.74 ; 28 \%$. 24. $\$ 1558.97$. 25. $\$ 70$. 26. $\$ 153687.50$. 27. $\$ 2275$ asking price, $\$ 22.50$ per A., $\$ 78750$ profit. 28. $\$ 1432.08$. 29. $4 \% ; \$ 140$. $30.8 \frac{405}{44} \%$. 31. An. Prem. $\$ 875 ;$ A pays $\$ 9174.31$; B, $\$ 6830.73$; C, $\$ 5504.59$; D, $\$ 3440.37$. 32. $\$ 12953.37$, \$453.37. з3. $\$ 80$. 34. $\$ 9600$. 35. 2.9636 cts., $\$ 447.04 . \quad$ 36. $4 \frac{1}{2} \%$. 37. $\$ 2425.17$. 38. $\$ 4500$. 39. $\$ 45$. 40. $\$ 1242 \frac{4}{13}$. 41.60%. 42. $\$ 1432.15$. 43. $11 \frac{13}{3} \frac{3}{7} \%$.

Art. 41\%. 2. $\$ 18, \$ 18.38, \$ 21 . \quad 3 . \quad \$ 15.27, \$ 14.84$. 4. $\$ 198.22$. $\$ 177.89$. \quad 5. $\$ 1221.58, \$ 161.09$. 6. $\$ 315, \$ 930 . \quad$ 7. $\$ 93.44, \$ 92.71$.
$\$ 91.98, \$ 96.36 . \quad$ S. $\$ 647,17, \$ 713.06$. 9. $\$ 514.50 . \quad$ 10. $\$ 17.72$. 12. $\$ 25.65, \$ 29.93, \$ 34.20, \$ 51.30$. 13. $\$ 35.53$, $\$ 33.94$. 14. $\$ 98.63$, $\$ 142.46 . \quad 15 . \$ 53.44, \$ 33.04$. 16. $\$ 158.59, \$ 49.30$. 17. $\$ 21.34, \$ 70.90$. 18. $\$ 287.50, \$ 155$. 19. $\$ 53.78, \$ 428.38$. 20. $\$ 472.50$. 21. $\$ 442.55$. 22. $\$ 6822.29$.

Alit. 420. 2. $\$ 35.70$. 3. $\$ 6.28 . \quad$ 4. $\$ 19.98$. 5. $\$ 70.11 . \quad 6$. $\$ 5.88$. 7. $\$ 186 . \quad 8 . \$ 26.11 . \quad 9 . \$ 26.25$. 10. $\$ 1.92$. 11. $\$ 8.66$. 12. $\$ 40.94, \$ 57.31, \$ 65.50$. 13. $\$ 8.97, \$ 12.56, \$ 14.36$. 14. $\$ 3.21, \$ 4.49$, $\$ 5.13$. 15. $\$ 51.33, \$ 71.86, \$ 82.12 . \quad 16 . \quad \$ 69.44, \$ 97.22, \$ 111.11$. 17 . $\$ 26.05, \$ 36.47, \$ 41.68$. 18. $\$ 3992.73$.

Art. 423. 6. $\$ 68.60, \$ 78.40, \$ 98 . \quad 7 . \$ 3.46, \$ 3.17, \$ 2.30 .8$. $\$ 188, \$ 70.50 . \quad$ 9. $\$ 2.04, \$ 2.92, \$ 1.75 . \quad 10 . \quad \$ 4.62, \$ 2.02 . \quad 11 . \$ 36.95$, $\$ 22.76 \quad$ 12. $\$ 242.55, \$ 151.20$. 13. $\$ 87.50, \$ 81.25, \$ 26.25$. 14. $\$ 4520$. 15. $\$ 406.53, \$ 395$. 16. $\$ 5070$. 17. $\$ 2619.78$. 18. $\$ 92.08$. 19. $\$ 341.25$. 20. $\$ 1011.60$. 21. $\$ 33.83$. 22. $\$ 126.46$.

Art. 425. 2. \$5.55. 3. \$24.93. 4. \$13.26. 5. \$1.36. 6. \$1.62. 7. $\$ 17.61 . \quad$ s. $\$ 23.56, \$ 17.53 . \quad 9 . \$.06+$. 10. $\$ 79.49$. 11. $\$.013+$. 12. $\$ 654.45$. 13. $\$ 47.59$. 14. $\$ 1226.83$.

Art. 426. 8. $\$ 780, \$ 585$. 4. $\$ 1260, \$ 1008 . \quad$ 5. $\$ 7855.97$, $\$ 13747.95$. 6. $\$ 200$. $\quad \approx . \$ 3032.90$.

Art. 42%. 2. 5%. 3. $7 \%-$ 4. $4 \% .5 .30 \%+.6 .1 \%$. \% 12%. 8. $12 \%, 8 \%$. 9. $2 \frac{1}{2} \%$ per month. 10. $65_{55}^{75} \%$. 11.9%.

Avt. 428. 2. 1 yr .4 mo 3. $1 \mathrm{yr} .4 \mathrm{mo} .28 \mathrm{da}+$. 4. 2 yr . 3 mo. 15 da. 5. 8 mo. 18 da.t. 6. 16 yr., 12 yr. 6 mo., 14 yr. 3 mo. $12 \frac{6}{7}$ da., 10 yr. 7. 16 yr. 8 mo., 8 yr. 4 mo., 33 yr. 4 mo. 8. 2 yr. 3 mo. 12 da. 9. $2 \mathrm{yr} .3 \mathrm{mo} .12 \frac{6}{7}$ da. $10.1 \mathrm{yr} .9 \mathrm{mo} .15 \mathrm{da} .+$.

Avt. 429. 2. $\$ 57.63$. 3. $\$ 296.78$. 4. $\$ 12.82 .5$. $\$ 428.16$. 6. $\$ 466$. \%. $\$ 106.60$.

Art. 431. 2. $\$ 523.69, \$ 48.69, \$ 742.47, \$ 102.47$. 3. $\$ 1225.04$, $\$ 225.04, \$ 1099.65, \$ 224.15$. 4. $\$ 2963.64, \$ 463.64, \$ 3954.67, \$ 354.67$. 5. $\$ 1018.72, \$ 268.72, \$ 5819.87, \$ 1319.87$. 6. $\$ 695.56$. \%. $\$ 40.48$, 8. $\$ 71.37$. 9. $\$ 407.29$.

Art. 432. 2. $\$ 5 ๊ 29.93, \$ 133.93$. 3. $\$ 2075.47, \$ 600.47$. 4. $\$ 1167.42, \$ 306.92$. 5. $\$ 1819.58, \$ 319.58$. 6. $\$ 1806.53, \$ 681.53$. $\%$ $\$ 948.97, \$ 373.97$. S. $\$ 3445.87, \$ 945.87$. 9. $\$ 1637.61, \$ 387.61$. 10 . $\$ 647.28$.

Art. 434. 2. $\$ 411.20, \$ 1411.20$. 3. $\$ 305.24, \$ 1070.24$. 4. $\$ 643.90, \$ 3283.90$. 5. $\$ 66.08, \$ 252.88$. 6. $\$ 1.76$. 7. $\$ 163.03$. \&. $\$ 1373.97$.

Art. 445. S. $\$ 456.89$. 4. $\$ 496.51 . \quad$ 5. $\$ 342.39 . \quad$ 6. $\$ 3309.26$. 7. \$3932.07. 8. \$1194.26.

Alt. 446. 2. \$139.82. 3. \$1492.52. 4. \$1502.53.
Alv. 452. 2. $\$ 398.74, \$ 76.76, \$ 455.02, \$ 20.48$. 3. $\$ 520, \$ 15.6 \mathrm{f}$, $\$ 502.13, \$ 33.47 . \quad$ 4. $\$ 846.25, \$ 13.75, \$ 14.52, \$ 45.48$. 5 . $\$ 1479.45$, $\$ 95.55, \$ 1444.40, \$ 130.60, \$ 1427.49, \$ 147.51 . \quad$ 6. $\$ 2.54$. 7. $\$ 912.775$, S: $\$ 10.06$. 9. $19 \frac{3}{13} \psi$ better to buy for cash. 10. $\$ 454.19$. 11. $\$ 600$ cash is $\$ 7.41$ better than $\$ 640$ at 12 mo., and $\$ 3.85$ better than $\$ 620$ for 6 mo . 12. $\$ 901.50, \$ 1030.51$. 13. $\$ 6059.19$. 14. $\$ 510.2$.

Art. 460. 2. $\$ 9.72, \$ 530.28$. 3. $\$ 9.19, \$ 865.81, \$ 25.21, \$ 594.79$. 4. $\$ 36.81, \$ 2107.69, \$ 49.09, \$ 2095.41$. 5 . $\$ 1.72, \$ 311.08, \$ 4.07, \$ 308.73$. 6. $\$ 45.21, \$ 2454.79, \$ 12.08, \$ 1137.92$. 7. \$.75. 8. $\$ 37.46, \$ 1523.54$. 9. $\$ 749.68$. 10. $\$ 855.03$. 11. Nov. 4; 87 da. ; \$459.29. 12. Dec. 6; 42 da. ; $\$ 729.93$. 13. Nov. 17 ; 77 da. ; \$974.68. 14. June 11; 57 da.; $\$ 298.85$. 15. Feb. 3 ; 33 da. ; $\$ 1253.16$. 16. $\$ 1158.09$. 17. $\$ 465.87$; \$4788.30.

Ait. 461. 2. $\$ 820.65, \$ 620$. 3. $\$ 1487, \$ 2092.60$. 4. $\$ 564.92$, $\$ 593.70$. 5. $\$ 1641.31 . \quad$ 6. $\$ 900$. 7. $\$ 1280.37 . \quad$ 8. $\$ 647.17 . \quad 9$. \$2488.51. 10: \$1503.57.

Art. 4\%3. 3. $\$ 663$. 4. $\$ 1511.25$. 5. $\$ 279.63$. 6. $\$ 3223.80$. 7. \$493.75. 8. $\$ 392.58$. 9. $\$ 379.24$. 10. $\$ 2493.40$. 11. $\$ 1435.68$. 12. $\$ 2189.70$. 18. $\$ 4687.51$. 14. $\$ 1900.48$.

Art. 4\%4. 3. $\$ 933.66$ 4. $\$ 740.66$. 5. $\$ 373.26$. 6. $\$ 490.52$. 7. \$1511.34. 8. \$2581.30. 9. \$606.32. 10. \$3200. 11. \$4006.72.

Art. 481. 4. \$2540.15. 5. \$698.39. 6. \$1688.37. \%. \$2717.14. 8. \$788. 9. \$3042.96. 10. \$669.34. 11. \$1302.82.

Art. 482. 3. £1026 13s. 10d. 2 far.+. 5. £1312 16s. 4d. $3 \frac{2}{3}$ far.+. 6. 22533 franc. 7. $2491 \frac{19}{67}$ guilders. 8. $\$ 10953.88$. 9. 8311.22 francs.

Art. 489. 2. $3.77+$ mo. 3. March 20,1881 . 4. $6 \frac{1}{6}$ mo. 5. 78 days; April 2,1880 . 6. $13 \frac{1}{9}$ mo. 8. June 25th of the next year. 9. In 6.625 mo . 10. July 5th. 11. 3 mo .

Art. 490. 2. Feb. 10, 1881. 3. Jan. 5, 1882. 4. Nov. 29. 5. $\$ 5577.49 . \quad$ 6. Nov. 23, 1880. 7. Sept. 28, 1882. 8. \$2235.87. 2. $\$ 1451.60$.
Arts. 493, 494. 2. Sept. 15, 1881. 3. Feb. 17, 1881. 2 $\$ 1737.21$. 3. $\$ 1413.88$. 4. $\$ 1830.60$. 5. July 5.

Art. 521. 3. 400 bu . 4. 144 yd . 5. $52 \frac{1}{17} \mathrm{mi}$. 6. $\$ 141.75$. 7. $\$ 7000$. 8. $106 \frac{3}{8} \mathrm{yd}$. 9.4 mo . 10. $\$ 48$, 11. 8 mo . 12. $10 \frac{2}{3} \mathrm{yd}$.
13. $106_{13} \frac{9}{\mathrm{f}} \mathrm{ft}$. 14. $\$ 310.50 .15 .32 \mathrm{da} . \quad 16 . \$ 2.81 \frac{1}{4} \cdot 17.61 \frac{5}{7} \cdot \mathrm{yd} . \quad 18$. 10 hr . 19. \$117. 20. 980 bu. 21:350 men. 22. $\$.80$. 23. $\$ 216.75$. 24. 55 mi . $25.17 \frac{1}{2} \mathrm{~A} .26 .64 \mathrm{da}$. 27. 240000 brick. 28.107250 lb .

Arts. 52'\%, 528. 3. A's $\$ 7466 \frac{2}{3}$, B's $\$ 5066_{3}^{2}$, C's $\$ 3466_{3}^{2}$. 4. A, $\$ 4242 \frac{6}{7}$; B, \$3535 ${ }_{7}^{\frac{5}{7}}$; C, $\$ 5185 \frac{5}{7}$. \quad 5. W. Johnson, $\$ 29953 \frac{1}{8}$; B. Johnson, $\$ 19968 \frac{3}{4}$; C. Mott, $\$ 139788_{8}^{1}$. 2. A, $\$ 424_{188}^{813}$; B, $\$ 778_{186}^{\frac{86}{113}}$; C,

Art. 534. З. 1, 4, 9, 16, $25,36,49,64,81,100,121,144$. 4. 1, $8,27,64,125,216,343,512,729,1000,1331,1728$. $5 . \frac{9}{16}, \frac{14}{48}, \frac{49}{144}, 6 \frac{1}{4}$,
 8. .008, .000027, 15.625, 1.157625, 1.003003001. 9. 2250000, 3375000000, 5062500000000 . 10. $759375.11 .262144 .12 .15625,15625,1953125$. 13. Nothing.

Art. 5.35. 2. 1369, 3136, 2304, 4225. 3. 8464, 15625, 17424.
Art. 53\%. 1. 262144, 373248 . 2. 592704, 1953125. 4. 15625, 59319, 91125,132651 . 5. 884736, 1030301, 2000376, 2863288.

Art. 543. 5. $\frac{8}{13} . \quad$ 6. $\frac{12}{12}$. 7. 111. 8. 15. 9. 17. 10. 24. $11 .^{2}$ 38. 12. 145. 13. 416 . 14. 999. 15. 989. 16. 17.177 +. 17. . 3789. 18. 1.5367. 19. 54.32. 20. .4. 21. 1.2649+. 22. .1264+. 23. 3.6. 24. 1.02. 25. . $0284+$. 26. $\frac{13}{16}$. 27. 15.4919+. 28. . $8819+.29$. 4.21307. 30. 2^{7}. 31. .7155 +. 32. .09. 33. 1400 ft . 34. 1400 yd . 35.30 in . by 120 in .36 .13 .5 rd ., or $3 \mathrm{ch} .1 .5 \mathrm{rd} .37 . \$ 720$.

Art. 545. 5. 44, 2.1. 6. 95, 7.4. 7. $\frac{17}{27}, \frac{5}{5} \frac{5}{5} . \quad$ 8. 48. 9. 67. 10. 134. 11. 411. 12. 258. 13. 638. 14. 975. 15. 6031. 16. 3.19. 17. .097. 18. .124. 19. .029. 20. 1.442+. 21. . $6694+$. 22. . $3107+$. 23. $\frac{2}{3}$. 24. . $6616+$. 25. $3.546+$. 26. 7.4. 27. $1.93+$. 28. . $1972+$. 29. . $315+$. $30.3 .382+$. $31.10 .21+$. $32.3 .47+$, $\frac{11}{24}, 5.35$. 33. $819 \frac{1}{6}, 6$, $34.37 \mathrm{ft} .35 .66 \mathrm{sq} . \mathrm{ft} .96 \mathrm{sq} . \mathrm{in} .36 .2 .884 \mathrm{ft} .37 .441 \mathrm{sq} . \mathrm{in} .38$. 33 in .39 .24 ft .40 .16 sq . ft.

Arts. 54\%, 548. 2. 6. 3. 36. 4. 3.2. 5. 8. 1. \$166.60. 2. 106_{3}^{2} A. 3. $964.276+$ bu. 4. $\$ 546$. 5. $1813 \frac{1}{3}$ A. 6. $\$ 10.16$. \%. $10 \frac{10}{10}$ min. after 2 o'clock P. M. 8. $308 \frac{385}{35} . \quad$ 9. $\$ 139.57$. 10. 200. 11. . 625 . 1\%. Neither. 13. $\$ 450$. 14. .15. 15. 26 $\frac{2}{3}$ cts. 16. \$139.33. 1\%.
 23. $5 \frac{5}{6} \mathrm{ft}$. 24. $74 \frac{2}{3}$ cts. 25. $7 \frac{1}{8} \%$. 26. $\$ 1154.45$. 27. $19 \frac{1}{\mathrm{yd}}$. 28. $\$ 144$ 29. \$20084. 30. 54 A .1045 F . 31. $336 \mathrm{rd}$. 32. \$1838.20. 33. 81 men. 34. 87 rd .3 yd .2 ft. $6 \mathrm{in} . \quad 35 . \$ 1518.60$. 36. 7350 sq . ft. 37. Cash price : Credit price $=100: 103$. 38. $\$ 173.72$. 39. 60 A. $152+\mathrm{P}$. 40. \$1749.85. 41. £164 7ss $9+\mathrm{d}$. 40. 4 da. 43. \$260.643. 44. $\$ 22500$.
45. $\$ 48$ suit, $\$ 60 . \quad 46.7 \%$. $47 . \$ 5116.50, \$ 153.50$. $48.192 \% ; \$ 9600$. 49. 16° West. $50.8 .53+\mathrm{ft}$. each way. 51. $9 \frac{1}{2}$ mills. 52. $\$.47 \frac{13}{2}$. 53. $\$ 1248.32 .54 .10 .17+\mathrm{ft}$. each way. 55. $\$ 60.60 .56 .151 .25$, 57. $\$ 445.8458$. $\$.50, \$.80, \$ 1.08$. 59. Nov. 21, equated time, $\$ 917.10 .60 .16 \frac{2}{3}$ yr. 61. $\$ 176.40 .62 . \$ 482.05 . \quad 63.42 \mathrm{mi} .64$. $4097 \frac{1}{2}$ yd. 65. Nov. 10, 1882, date Mat.; 4 mo. 16 da., term dis.; $\$ 1980.82$, pro. 66. $90 \mathrm{yd} . ; 63 \mathrm{cts}$. 6%. $\$ 364.99$. 68. $\$ 453.75$. 69. $\$ 316.67$. $70 . \$ 660$ at sim. int., $\$ 679.20$ at an. int., $\$ 680.24$ at com. int. 71. $\frac{29}{69}$. 72. 45 bu . 73. 75 da., term of cred.; June $26 . \quad 74.1 \mathrm{mi} .56 \mathrm{ch}$. 1 rd. 2 yd. 1 ft. 6 in. 75. $\$ 1334.50$. 76. $\$ 1225.12 \frac{1}{2} . \quad$ '7\%. Feb. 16. 78. $\$ 261 \frac{27}{43}, \$ 279 \frac{3}{43}, \$ 209 \frac{13}{4} \frac{3}{3}$. 79. $12 \frac{1}{2} \%$. 80. Feb. 17. 81. 12 bbl at $\$ 7$, 28 bbl . at $\$ 10$. 82. 8d. 1_{65}^{63} far. 83. $\mathrm{A}, \$ 1333 \frac{1}{3} ; \mathrm{B}, \$ 1639 \frac{21}{61}$; C, $\$ 1027 \frac{59}{183}$. \quad \&4. 11 T. $11 \mathrm{cwt} .56 \mathrm{lb} .4 \mathrm{oz} . \quad \delta 5 . \$ 398.03 . \quad \delta 6.17 \mathrm{ft}$. 87. $\$ 7869.28$. S8. $\$ 11951.25$. S9. \$429.67, \$430.66, \$430.67. 90. $\$ 480, \$ 360, \$ 420$. 91. 2 men. 92. 16560 . 93. $\$ 2760$. 94. 2% better on money loaned.

Arts. 556, 55\%. 5. 41. 6. 149. 7. 7. 8. $9 \frac{3}{4}$. 2. $2 \frac{1}{7}$. 3. 2. 4. $\frac{5}{34}$.

Arts. 55S, 559. 2. 308. 3. 1001000 . 4. 432 mi . 3. 114688. 4. $\frac{1}{256}$ 5. $\frac{3}{4} . \quad 6.128 \mathrm{mi} .7 . \$ 1296.87$.

Arts. 560, 566. 3. $255.4 .3 \frac{241}{405}$. 5. $1 \frac{1511}{512} .6 .1275 . \quad$ 7. 2186. 8. 635. 9. $\$ 17433922 . \quad 10.1111111 .111 . \quad$ 3. $\$ 1053.4 . \$ 56550.5$. $\$ 3625$. 6. $\$ 7500 .{ }^{\prime}$ \%. $\$ 26840$. 8. $\$ 6350$. 9. $\$ 7136.36$.

Arts. $5 \% 1,5 \% 2.2 .41 \frac{1}{5}$ cts. 3. $5 \frac{15}{19}$ cts. 4. $\$ 1.96_{25}^{8}$. 2. 5,1 , 1,4 . 3. $8,3,3,5,5$. 4. $5,4,1,1,5$.

Art. $592 . \quad 5.9327 \mathrm{~m} .6 . \quad .190141 \mathrm{Km}$. 7. $67117.7 \mathrm{~m} . \quad \delta$. $25625 \mathrm{~m} . \quad 9.14 \mathrm{hr} . \quad 10.12 .725 \mathrm{~m} . \quad 11.20 \mathrm{hr} .12 . \$.0224 .13$. $20.90976 \mathrm{~T} ., 5.24576 \mathrm{~T} .14 . \$ 4720$. 15.187 .5 Kg . 16.34 .944 Km . 17. $8.25 \mathrm{~m} \quad 18.122$.

Art. 5.96. 1. $40.19+\mathrm{ft} ., 442.91+\mathrm{ft}, 251.8+\mathrm{ft}$. 2. $74.66+\mathrm{yd}$. , $35.14+\mathrm{yd} . \quad 3.82 .296 \mathrm{~m} ., 11.43 \mathrm{~m} . \quad 4.4 .97+\mathrm{mi} ., 279.63 \mathrm{mi}$. 5. $15480 \mathrm{~m} . ; 9.618+\mathrm{mi}$. 6. $\$ 97.92$. 7. 120697.5. 8. Lost $\$ 11.81$, 9. $1.254+$ a., $24.98+$ A. 10.3369 .71 a., $33.6971 \mathrm{Ha} ., 83.265+$ A. 11 . 133.12 sq. m. 12. $\$ 27.90$. 13. $46.91+$ yd. ; $\$ 70.37$. 14. 3249.127 cu. ft., $25.38+\mathrm{Cd}$. 15.7 .2486 sters, 20.839725 sters. 16.42 .17 .625 Hl . 18. $\$ 132.82, \$ 146.58$. 19. $\$ 260.06$. 20. 19.062868 gal. ; $45.4244+\mathrm{l}$. 21. $114.5374+$ 1.; 3.7029375 bu . 22. 175 l.; $184.9225 \mathrm{qt} 23.15300 l.$. 24. $\$ 25$. 25. $\$ 2.84$. 26. $\$ 436.79$. 27. $2.57 \frac{1}{6} \mathrm{lb}$. Troy, 2.1162 lb . Avoir. 28. $62.216+$ grams, $2986.3901+$ grams, $\quad 2948.681+$ grams.
29. 8 Mg .8 Kg .9 Hg .5 g .6 dg . 30.66 cts . more profitable at 12ϕ a lb . 31. $\$ 30.6$. 32. $\$ 11.33$. 33. $8 \frac{4}{5} \%+$ gain. 34. $\$ 2.33$.

Art. 61\%. 2. 900 sq. ft. 3. 15 A. 4. 319. 6. $433.705+$ sq. in. $7.13 .26+.8 .997 .66+$ sq. ft. 10.34 ft .11 .32 ft .12 .19 ft .15. $50 \mathrm{ft} . \quad 16.45 .82+\mathrm{ft} . \quad 17.104 \mathrm{ft} . \quad 18.120 \mathrm{mi} . \quad 19.135 .88+\mathrm{rd}$. 20.80 ft .

Arts. 618, 619. 2. 2080. 3. 40. 4. 41. 2.210 sq. rd. 2. 1661 sq . It. 3. 2. 4. $18.98+\mathrm{A}$.

Arts. 620, 621. $3.15 .278 \mathrm{ft} . \quad 4.10 .9956+\mathrm{ft} . \quad 5.11 .936+\mathrm{ft}^{2}$ $3.452 .39+$ sq. ft. $\quad 4.1790 .488+$ sq. ft. $\quad 5.50 .929+$ A. $\quad 6.7 .97+\mathrm{rd}$.

Arts. 635, 636. 2. 198 sq. ft. 4. $37.699+$ sq. ft. 5. 216 sq. ft. 6. 108 sq. ft. 7. 143 sq. ft. 8. $15.31+$ sq. ft. 3. $76.76+\mathrm{cu} . \mathrm{ft} . \quad$ 4. $\$ \mathrm{i} 0.80 . \quad 5.76 .969+\mathrm{cu} . \mathrm{ft} . \quad 6 . \$ 30.56$.

Arts. 63\%, 638. 3. $148.44+$ sq. ft. 4. 1280 sq. ft. 3. $848.70+\mathrm{cu}$. in. $4.7854 \mathrm{cu} . \mathrm{ft} . \quad 5.5400 \mathrm{cu} . \mathrm{ft} .6 .18 \mathrm{cu} . \mathrm{ft}$.

Art. 639. 2. 19.635 sq. ft. 3. 28.2744 sq. ft. 4. 196663355.75 square miles.

Arts. 640, 641. 2. $19.39+\mathrm{cu} . \mathrm{ft} .3$ 3. . $5236 \mathrm{cu} . \mathrm{ft} .4$. $1.76715 \mathrm{cu} . \mathrm{ft}$. 2. 99.144 gal . 3. $47+\mathrm{gal}$. 4.174 .93 gal .

Art. 645. 2. $128 \mathrm{ft} .5^{\prime}$. 3. $37 \mathrm{ft} .7^{\prime} 7^{\prime \prime} 6^{\prime \prime \prime} 8^{\prime \prime \prime \prime}$. 4. $9 \mathrm{ft} .6^{\prime} 4^{\prime \prime}$. $3^{\prime \prime \prime} 8^{\prime \prime \prime \prime}$. 5. $120 \mathrm{ft} .4^{\prime} 1^{\prime \prime} 4^{\prime \prime \prime} 6^{\prime \prime \prime \prime} .6 .36 \mathrm{ft} .3^{\prime} 8^{\prime \prime} 0^{\prime \prime \prime} 8^{\prime \prime \prime \prime} . ~ \% . ~ 161 \mathrm{ft}$. $10^{\prime} 8^{\prime \prime} 8^{\prime \prime \prime} 6^{\prime \prime \prime \prime} .8 .56 \mathrm{ft} .7^{\prime \prime} 5^{\prime \prime} 3^{\prime \prime \prime} 3^{\prime \prime \prime \prime} 8^{\prime \prime \prime \prime \prime} .9 .12 \mathrm{ft} .8^{\prime} 0^{\prime \prime} 2^{\prime \prime \prime}$.

Art. 653. 1. 384 A. ; $\frac{3}{5} ; \$ 14400, \$ 480$. 2. $\$ 200$. 3. 120 A. 4. 200 A ; $\frac{5}{16}$ sec. $5.160 \mathrm{~A} . ; \$ 60$ less. 6. $\$ 331.52$.

DATE DUE SLIP

QA 103 F44 1881 Ficklin, Joseph, 1833-. National arithmetic; oral and written.
田

[^0]: * At first these exercises may be written before adding ; then the writing may be omitted entirely.

[^1]: 9) $\$ 136.1 \%$
 $\$ 15.13$

[^2]: * Rules are omitted, where the mental exercises, analyses, and explanations are so full and explicit as to make the rule obvious. The pupil, however, should be required to frame a rule for all such cases.

[^3]: * Whenever practicable, every recitation in arithmetic should be commenced with a brief mental exercise or drill, followed by a corresponding written one.

[^4]: * The year is considered as having only 360 days, unless otherwise stated

